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Abstract.   Understanding the influence of environmental variability on population dynamics 
is a fundamental goal of ecology. Theory suggests that, for populations in variable environments, 
temporal correlations between demographic vital rates (e.g., growth, survival, reproduction) 
can increase (if positive) or decrease (if negative) the variability of year- to- year population 
growth. Because this variability generally decreases long- term population viability, vital rate 
correlations may importantly affect population dynamics in stochastic environments. Despite 
long- standing theoretical interest, it is unclear whether vital rate correlations are common in 
nature, whether their directions are predominantly negative or positive, and whether they are 
of sufficient magnitude to warrant broad consideration in studies of stochastic population 
dynamics. We used long- term demographic data for three perennial plant species, hierarchical 
Bayesian parameterization of population projection models, and stochastic simulations to 
address the following questions: (1) What are the sign, magnitude, and uncertainty of temporal 
correlations between vital rates? (2) How do specific pairwise correlations affect the year- to- 
year variability of population growth? (3) Does the net effect of all vital rate correlations 
increase or decrease year- to- year variability? (4) What is the net effect of vital rate correlations 
on the long- term stochastic population growth rate (λs)? We found only four moderate to 
strong correlations, both positive and negative in sign, across all species and vital rate pairs; 
otherwise, correlations were generally weak in magnitude and variable in sign. The net effect of 
vital rate correlations ranged from a slight decrease to an increase in the year- to- year variability 
of population growth, with average changes in variance ranging from −1% to +22%. However, 
vital rate correlations caused virtually no change in the estimates of λs (mean effects ranging 
from −0.01% to +0.17%). Therefore, the proportional changes in the variance of population 
growth caused by demographic correlations were too small on an absolute scale to importantly 
affect population growth and viability. We conclude that, in our three focal populations and 
perhaps more generally, vital rate correlations have little effect on stochastic population 
dynamics. This may be good news for population ecologists, because estimating vital rate 
correlations and incorporating them into population models can be data intensive and 
technically challenging.
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linear mixed models (GLMM); hierarchical Bayes; integral projection model (IPM); stochastic population 
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introduCtion

In recent years, ecologists have become increasingly 
aware of the effects of temporal variability on population 
dynamics. This is a timely topic in global change ecology 

(e.g., Jenouvrier et al. 2012, Vasseur et al. 2014, Lawson 
et al. 2015) because global circulation models suggest that 
climatic variability will increase (Easterling et al. 2000, 
Rahmstorf and Coumou 2011). Beyond its significance in 
the context of global change, temporal variability is a 
broadly important topic in ecology because its implica-
tions extend to evolutionary (Tuljapurkar et al. 2009), 
community (Adler et al. 2006), and ecosystem (Hsu et al. 
2012) levels.

Theory predicts that temporal variability should gen-
erally decrease the long- term population growth rate 
(Lewontin and Cohen 1969, Tuljapurkar and Orzack 
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1980, Boyce et al. 2006). Consider that population size N 
grows from time t to t + 1 as a factor of the temporally 
varying geometric population growth rate λt, such that 
Nt+1 = Nt λt. If λt is a random variable with expected 
value (arithmetic mean) E[λt] and variance Var(λt), the 
long- term stochastic population growth rate λs is approx-
imated by log(λs) ≈ log(E[λt]) − Var(λt)/(2E[λt]2) 
(Lewontin and Cohen 1969). Thus, an increase in varia-
bility is expected to decrease long- term population 
growth, all else equal. This expectation holds for both 
unstructured (Lewontin and Cohen 1969) and structured 
populations (Tuljapurkar and Orzack 1980, Fieberg and 
Ellner 2001) and is supported by empirical studies (e.g., 
Morris et al. 2008, 2011, Buckley et al. 2010, Jongejans 
et al. 2010).

Population growth is determined by a combination of 
individual- level demographic rates (e.g., survival, growth, 
and reproduction), henceforth called “vital rates,” each 
of which can exhibit a unique pattern of temporal vari-
ation and covariation with other vital rates. Theory sug-
gests that the sign and magnitude of correlations among 
vital rates is an important factor in determining the effect 
of temporal variability on population dynamics; this can 
be seen by expanding Var(λt) to its lower- level variances 
and covariances (Tuljapurkar 1982). Positive correlation 
of vital rates through time (e.g., years that are bad for 
reproduction are also bad for survival) is expected to 
increase the variability in population growth, making the 
effect of temporal variance on the long- term stochastic 
growth rate (λs) more negative than if vital rates varied 
independently. Such positive temporal correlations could 
arise if vital rates exhibit similar responses to environ-
mental forcing or extreme years (Doak and Morris 2010). 
On the other hand, negative correlation through time 
(e.g., years that are good for reproduction are bad for 
survival, and vice versa) is expected to decrease the vari-
ability of population growth, thereby buffering the neg-
ative effect of temporal variance on the long- term 
stochastic growth rate. Such negative temporal correla-
tions could arise from life history trade- offs, such as those 
between reproductive and somatic function (Stearns 
1992, Charnov 1993, Roff 2002). For example, costs of 
reproduction in plants could make years that are 
favorable for flowering unfavorable for growth, and vice 
versa (Williams et al. 2015). Negative correlation between 
vital rates may also reflect independent but opposing 
responses to environmental drivers, with no underlying 
trade- off between them (Knops et al. 2007).

Regardless of the underlying mechanisms, empirical 
understanding of vital rate correlations and their influence 
on stochastic population dynamics lags behind theory. A 
handful of empirical studies have suggested that vital rate 
correlations can be an important component of demo-
graphic variability (Coulson et al. 2005, Ezard et al. 2006, 
Evans et al. 2010, Jongejans et al. 2010, Morris et al. 2011, 
Jacquemyn et al. 2012, Davison et al. 2013, Elderd and 
Miller 2016). However, several challenges limit the ability 
to understand whether vital rate correlations deserve 

broader consideration in studies of stochastic population 
dynamics. First, demographic studies rarely exceed five 
interannual transitions (e.g., Salguero- Gómez et al. 2015). 
Limited temporal replication limits estimation because 
correlation coefficients are highly sensitive to sample size 
(Schönbrodt and Perugini 2013). For example, the 
majority of data sets analyzed by Jongejans et al. (2010), 
one of the most comprehensive studies of vital rate corre-
lations to date, included between three and five transition 
years. These authors concluded that vital rate correlations 
rarely affected population growth in stochastic environ-
ments, but their power to estimate correlations was low. 
Second, even with sufficient data, accurately estimating 
vital rate correlations poses non- trivial technical diffi-
culties. In particular, independent estimation of correla-
tions and variances is required to model environmental 
stochasticity correctly (Doak et al. 2005). Moreover, there 
is no consensus regarding the best approaches for esti-
mating vital rate correlations and their influence on pop-
ulation dynamics (e.g., Evans and Holsinger 2012).

Here, we use hierarchical Bayesian methods to quantify 
year- to- year vital rate correlations and population pro-
jection models to evaluate their contributions to sto-
chastic population dynamics for three perennial plant 
populations. Our data sets span 11–15 years of demo-
graphic observations, providing an unusually strong 
empirical foundation for quantifying temporal variation 
and covariation in vital rates. We investigate the role of 
vital rate correlations in stochastic population dynamics 
by parameterizing population projection models with a 
set of generalized linear mixed models (GLMM). In this 
framework, year- specific vital rates are drawn from a 
multivariate distribution, thus linking the temporal fluc-
tuations of different vital rates. To our knowledge, this is 
the first study to estimate vital rate correlations in this 
way, and the distinction carries several important advan-
tages. First, each GLMM has direct correspondence to a 
particular life history process (growth, survival, fertility, 
etc.). Therefore, a linked GLMM framework facilitates 
biological interpretation by allowing us to test for corre-
lations between life history functions per se. This 
approach contrasts with element- by- element parameteri-
zation of matrix models, where correlations between 
matrix elements may lack an intuitive biological interpre-
tation. Second, the efficiency of a GLMM foundation 
reduces the potential for spurious correlations because it 
requires estimation of fewer vital rate parameters than a 
classical matrix model (Ellner and Rees 2006) and thus 
fewer vital rate correlations. The GLMM approach is the 
default statistical framework of stochastic integral pro-
jection models (Rees and Ellner 2009) but is similarly 
powerful in the context of stochastic matrix models, as 
demonstrated here and elsewhere (e.g., Evans et al. 2010). 
Finally, estimating correlations in a hierarchical Bayesian 
framework provides posterior probability distributions 
for correlation coefficients that reflect estimation uncer-
tainty, which can then be propagated into the outputs of 
population projection models (Elderd and Miller 2016).
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Once having estimated vital rate correlations, we then 
elucidate their role in stochastic population dynamics. The 
contributions of vital rates to stochastic population 
dynamics are typically unequal, because vital rates differ in 
both year- to- year variability (Pfister 1998) and sensitivity 
(e.g., Franco and Silvertown 2004). As a result, the strength 
of a correlation is not necessarily predictive of its effect on 
population growth (Doak et al. 2005). We used stochastic 
simulations to quantify the individual effects of pairwise 
vital rate correlations, as well as the combined effect of all 
correlations, on long- term fitness. In particular, we used 
simulations to quantify the contributions of vital rate 
 correlations to the year- to- year variation in population 
growth rate (λt) and the long- term stochastic population 
growth rate (λs). For each of three perennial plant popula-
tions, we used long- term demographic data to address the 
following questions: (1) What are the sign, magnitude, and 
uncertainty of correlations between demographic vital 
rates? (2) What are the effects of specific pairwise vital rate 
correlations on the year- to- year variability of population 
growth? (3) Does the net effect of all vital rate correlations 
increase or decrease year- to- year variability in population 
growth? (4) What is the net effect of vital rate correlations 
on the long- term stochastic population growth rate (λs)?

methodS

Focal species and demographic data sets

We analyzed long- term demographic data from one 
population each of three species of iteroparous perennial 
plants: the aspen sunflower (Helianthella quinquenervis), 
the tree cholla cactus (Opuntia [=Cylindropuntia] 
imbricata), and the lady orchid (Orchis purpurea). 
Helianthella quinquenervis occurs in wet and boggy 
montane meadows of Western North America (Weber 
1952). Our data came from a population at the Rocky 
Mountain Biological Laboratory in Colorado, USA 
(38°57′42.92″ N, 106°51′57.96″ W), where 3361 unique 
individuals were censused between 1998 and 2012 (details 
of data collection are provided in Appendix S1). Opuntia 
imbricata is a cactus found throughout the deserts and 
arid grasslands of Southwestern North America (Benson 
1982). Our data came from a population at Sevilleta 
National Wildlife Refuge in central New Mexico, USA 
(34°20′5.3″ N, 106°37′53.2″ W), where 1001 unique indi-
viduals were censused between 2004 and 2015 (see Miller 
et al. [2009] and Ohm and Miller [2014] for details of study 
site and data collection). Finally, Orchis purpurea is an 
orchid that occurs in forest understories throughout the 
Mediterranean region of southern Europe (Rose 1948). 
Our data came from a population in eastern Belgium 
where 914 unique individuals were censused between 2003 
and 2015 (see Jacquemyn et al. 2010, Miller et al. 2012). 
For all species, demographic data came from longitudinal 
studies in which individual plants were marked and cen-
sused annually for survival, size, and reproduction 
(number of flowers). In H. quinquenervis, size was 

quantified by the number of rosette clumps (Inouye 2008). 
In Op. imbricata, the size variable was plant volume (cm3), 
based on height and width measurements (Miller et al. 
2009). In Or. purpurea, the size variable was total leaf area 
(cm2), approximated using length and width measure-
ments of individual leaves (Jacquemyn et al. 2010). For 
each species, we also had estimates of seedling recruitment 
as a function of previous seed production, allowing us to 
close the life cycle loop (Appendix S2).

Vital rate functions and correlations

The life histories of these perennial plants shared at least 
four main demographic vital rates for which we had data to 
model interannual variation and covariation: probability of 
survival, vegetative growth, probability of flowering, and 
fertility (number of flowers) of flowering plants, all of which 
we modeled as functions of plant size. For H. quinquenervis 
and Or. purpurea, we additionally modeled the temporal 
variation in the flower- to- fruit transition. In H. quinquen-
ervis, temporal variation in this transition is strongly deter-
mined by the timing of spring snowmelt, which affects the 
floral abortion risk (Inouye 2008). In Or. purpurea, year- 
to- year fluctuations in pollinator limitation affect the 
probably that initiated flowers set fruit (Jacquemyn and 
Brys 2010). For Op. imbricata, we did not explicitly consider 
fruit set, which is very high due to efficient pollination ser-
vices by specialist cactus bees (Ohm and Miller 2014). In 
addition, for Or. purpurea only, we modeled temporal vari-
ation in the probability of dormancy (this species can persist 
in a belowground dormant state). Thus, our study species 
had as few as four (Op. imbricata) and as many as six 
(Or. purpurea) time- varying vital rates. Interannual varia-
bility in these vital rates is presumably caused by climate 
fluctuations, though we did not explicitly model climate 
effects. Finally, for each species there was a set of unique 
vital rates, such as the number of seeds per fruit, the seed- to- 
seedling recruitment probability, and the probability of 
seed- banking, for which we had mean estimates but no 
information on temporal variance. Complete life cycle 
details for each species are provided in Appendix S2.

We modeled each of the time- varying vital rates by 
fitting generalized linear mixed- effect models to the 
long- term demographic data. Each vital rate was modeled 
as a linear function of plant size, with intercept α and 
slope β (except the flower- to- fruit transition, which had 
no size slope). We included temporal variation by 
allowing the intercepts to vary randomly from year to 
year (αt), including the potential for correlated variation 
between vital rate intercepts. Preliminary analyses indi-
cated that there was not enough information in the data 
to model temporal variation and co- variation in both the 
intercepts and slopes of the size- dependent vital rate 
functions. We therefore modeled temporal variation in 
the intercepts only, thus assuming that individuals of dif-
ferent size responded similarly to interannual variation.

Details of the vital rate models differed between species 
because size was a continuous variable in Op. imbricata 
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and Or. purpurea (volume and leaf area, respectively) but 
a discrete variable in H. quinquenervis (number of rosette 
clumps). To illustrate our approach to modeling vital rate 
correlations, we present here statistical models for the 
species with continuous size structure. In these species, 
growth was modeled with a normal distribution to pop-
ulate a continuous kernel of size transitions, as in a classic 
integral projection model (IPM). Vital rate models for 
H. quinquenervis were very similar but growth was 
modeled with a negative binomial distribution, thereby 
populating a discrete projection matrix rather than a con-
tinuous kernel (Appendix S1). In the notation below, we 
use superscripted letters on intercepts (e.g., αG) and 
slopes (βG) to represent different vital rates (“G” for 
growth); note that these are not exponents. For growth, 
the response variable, Gi,t+1, was the loge(size) of indi-
vidual i in year t + 1, which we modeled as normally dis-
tributed with time- independent standard deviation σG 
and mean given by a linear function of size in year t 

 

For survival, the response Si,t+1 described whether 
individual i was alive (success) or dead (failure) in year 
t + 1. Accordingly, we modeled survival as a Bernoulli 
process with probability of survival Ŝ

t+1, which was given 
by a linear function of size in year t 

 

where logit(x) gives log(x/(1 − x)). Like survival, the 
probability of flowering in year t was modeled as a 
Bernoulli process. The mean P̂

t
 of this Bernoulli process 

was given by a linear function of size in year t 

 

Finally, for flowering plants, we modeled fertility as the 
number of reproductive structures. These were flowers in 
Op. imbricata and Or. purpurea, and flowering stems in 
H. quinquenervis, each of which produced multiple flowers 
(included in the model as a constant value; Appendix S2). 
The number of reproductive structures produced by indi-
vidual i in year t, Fi,t, was modeled as a negative binomial 
process with overdispersion parameter ΘF, and mean F̂

t
 

given by a linear function of size in year t 

 

In Or. purpurea and H. quinquenervis, we also modeled 
an additional time- varying vital rate: the flower- to- fruit 
transition probability. We modeled this vital rate as a 

beta- binomial process. We used an alternative parame-
terization of the beta- binomial distribution that is based 
on a mean probability of successes (fruits), M̂

t
, the 

number of trials, represented by the number of repro-
ductive structures Fi,t, and an overdispersion parameter 
ΘM (Morris 1997): 

 

Last, in Or. purpurea only, we modeled the probability 
of dormancy in year t + 1 as a Bernoulli process with mean 
probability given by a linear function of size in year t 

 

The time- varying vital rates were linked via the inter-
cepts of the size- dependent functions, which were drawn 
from a multivariate normal (MVN) distribution with 
mean vector μ and variance- covariance matrix Σ. For 
example, for Op. imbricata, whose model included four 
time- varying vital rates, 

 

 

 

The symmetric matrix Σ includes the vital rate vari-
ances (expressed as products of the standard deviations) 
on the diagonal and covariances (expressed as products 
of the standard deviations and correlation coefficients) 
on the sub- diagonal. We used a similar approach for 
H. quinquenervis and Or. purpurea, but these species had, 
respectively, one and two additional time- varying vital 
rates and therefore dimension 5 × 5 and 6 × 6.

Parameter estimation

We estimated the parameters of the vital rate func-
tions, including the vital rate correlations ρij, in a hierar-
chical Bayesian framework. This approach allowed us to 
model all time- varying vital rates in a single analysis 
rather than piece by piece; this means that we could 
simultaneously estimate vital rate parameters and their 
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temporal variances and covariances. In addition, the 
output of a Bayesian analysis is a posterior probability 
distribution for each parameter mean, variance, and 
covariance, reflecting the uncertainty in the estimates 
given the uncertainty in the data. These posterior distri-
butions allow us to transfer the uncertainty in vital rate 
estimation to the uncertainty in the output of the popu-
lation models.

We fit our models in Stan (Stan Development Team 
2015), a programming language that allows Bayesian 
inference without requiring conjugacy of priors. The 
central objective of our statistical models was to estimate 
the correlations and variances of vital rates (the lower- 
level parameters of Σ) separately. In stochastic popu-
lation dynamics, the variance of vital rates and the 
correlation among vital rates have distinct effects (Doak 
et al. 2005). In previous studies, ecologists have estimated 
Σ using an inverse Wishart prior (e.g., Ibáñez et al. 2009). 
This is the only known conjugate prior for Σ and is thus 
an obligate choice for the most popular packages that fit 
Bayesian models using Gibbs sampling (e.g., Lunn et al. 
2000, Plummer 2003). However, using an inverse Wishart 
prior for Σ produces biased estimates whereby correla-
tions and variances are not independent (Gelman and 
Hill 2007). We therefore used Stan, which fits models 
using No- U- Turn (Hoffman and Gelman 2014) or 
Hamiltonian Monte Carlo (Duane et al. 1987) sampling, 
a powerful alternative that allowed us to estimate vari-
ances and correlations independently.

We fit the Bayesian models using uninformative priors 
for all parameters. We decomposed the variance–covar-
iance matrix to Σ = diag(σ) Ρ diag(σ), where diag() returns 
a diagonal matrix, P is a matrix of pairwise correlation 
coefficients, and σ is a vector that contains the standard 
deviations. We estimated the correlation matrix Ρ using 
an LKJ prior (the acronym refers to the initials of the 
authors in Lewandowski et al. 2009), and the standard 
deviation of each vital rate intercept (σS, σG, σP, σF, σM, σD) 
using Cauchy priors. We used normal priors for the α and 
β regression coefficients (Eqs. 1–6), and an inverse gamma 
prior for σG (Eq. 1a). Moreover, we used uniform priors 
with support [0, 100] for the negative binomial overdis-
persion parameters ΘG (Eq. S.1a) and ΘF (Eq. 4a), and a 
Pareto prior for the beta binomial overdispersion 
parameter ΘM (Eq. 5a, Gelman et al. 2013). We fit models 
using the RStan package (Stan Development Team 
2015). We ran four 5000- iteration Markov chain Monte 
Carlo simulations, discarding the initial 1000 iterations. 
This number of iterations is usually sufficient for model 
convergence when taking Hamiltonian Monte Carlo 
samples, and was sufficient to reach convergence in 
H. quinquenervis and Op. imbricata according to Brooks 
and Gelman’s (1998) potential scale reduction factor (r̂). 
In Or. purpurea, models converged after 30 000 iterations. 
We evaluated model fit by carrying out posterior pre-
dictive checks (Appendix S3: Figs. S1–S3) and by visual-
izing predictions of the models against raw data 
(Appendix S2). For each parameter, we estimate its 95% 

credible interval (the inner 95% density of the posterior 
distribution).

Population modeling

We used the vital rate model parameters, including the 
vital rate correlations, to build stochastic population pro-
jection models. We built IPMs for Op. imbricata and Or. 
purpurea, and a matrix population model (MPM) for 
H. quinquenervis. Both IPMs and MPM describe the 
dynamics of populations structured by one or more state 
variables. Here, our state variable was the size of indi-
viduals, such that IPMs were appropriate for continuous 
size (Op. imbricata and Or. purpurea) and a MPM was 
appropriate for discrete size (H. quinquenervis). In our 
models, the discrete time step (t to t + 1) corresponded to 
one year. For the IPMs, the continuous state variable was 
loge(size) and size structure dynamics were projected as 

The kernel function K(y,x;αt) is a surface that describes 
all possible transitions from loge(size) x at time t to 
loge(size) y at time t + 1. The vector αt is the vector of 
time- varying parameters that govern temporal variability 
in the kernel (Eq. 7). L and U are, respectively, the lower 
and upper limits of the loge(size) distribution.

For the H. quinquenervis MPM, population dynamics 
were projected according to 

Here, n is a vector that includes the abundance of each 
discrete size (clump number) and A(αt) is a projection 
matrix that describes all possible transitions from size x to 
size y. Similarly to the IPM kernel (Eq. 8), the projection 
matrix takes the vector of year- specific vital rates, αt, 
which governs its temporal variability. Eqs. 8 and 9 are a 
generic representation of our stochastic population pro-
jection models: in Appendix S2 we provide detailed, 
species- specific versions of Eqs. 8 and 9, which also 
include discrete states of the life cycle such as below-
ground tubers and dormant plants in Or. purpurea and 
seed banks in Op. imbricata.

We ran stochastic simulations of the IPMs and MPM 
using fitted estimates for the vital rate means, variances, 
and covariances (presented in Appendix S2). These sim-
ulations provided baseline estimates for the variability of 
the year- specific geometric population growth rates 
(Var(λt)) and the stochastic long- term population growth 
rate (λs). For the simulations, we defined a stochastic 
sequence of environments by drawing 50 000 vectors 
(years) for αt according to a multivariate normal distri-
bution based on empirical estimates for mean vector μ 
and variance–covariance matrix Σ, following Eq. 7a–d. 
We then simulated the population models 50 000 times 
and analyzed data from the last 45 000 time steps, 
excluding the initial transient dynamics of the size 

(8)n(y)t+1 =∫
U

L

K(y,x;�t)n(x)tdx.

(9)nt+1 =A(�t)nt.
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distribution. We first simulated population dynamics 
using the mean values of vital rate parameters’ joint pos-
terior. To quantify uncertainty in our inferences for 
Var(λt) and λs, we replicated simulations by running 100 
separate population projection models built using 100 
random samples from the joint posterior distribution of 
all vital rate parameters, including those associated with 
stochasticity: the coefficients of the correlation matrix Ρ 
and the vector of standard deviations σ. We considered 
100 a sensible number of posterior draws, because as few 
as 25 draws provided a qualitatively similar range of 
estimate uncertainty as our final results (Appendix S4).

Effects of vital rate correlations on the variance  
of population growth

We first asked how individual vital rate correlations 
and the combination of all pairwise correlations modified 
the variance of year- to- year population growth rates, 
motivated by the predictions that negative and positive 
correlations should tend to decease and increase Var(λt). 
To do this, we ran models projecting populations whose 
vital rates varied independently (correlations “off”) and 
contrasted the results with the baseline simulations 
described above (correlations “on”), holding all else 
equal between the two treatments, including the same 
random sequence of temporal variation. For the no- 
correlation models, we modified P matrices to simulate 
populations where (1) only one pairwise correlation was 
turned off and (2) all vital rate correlations were turned 
off. These two approaches provide complementary infor-
mation, since a weak combined effect of all correlations 
could reflect uniformly weak effects of individual corre-
lations or strong opposing effects of pairwise correlations 
that cancel each other out. For the analysis of individual 
correlations, we set two elements of the P matrix equal to 
0, such that ρij = ρji = 0. We repeated this process for each 
pairwise vital rate correlation. For the analysis of all cor-
relations combined, all non- diagonal elements of the 
P matrix were set equal to 0, so that P was an identity 
matrix I, and the variance–covariance matrix was given 
by Σ = diag(σ) I diag(σ). The difference in Var(λt) between 
simulations with correlations on and off estimates the 
effect of vital rate correlation on Var(λt). To compare 
results across species, we calculated the percentage 
change in variance relative to the case with correlations 
off (ΔVar(λt) = 100 × [Var(λt,on) − Var(λt,off)]/Var(λt,off)). 
Finally, to account for uncertainty, we replicated these 
simulation experiments for each of 100 draws from the 
joint posterior distribution of all vital rate parameters.

We also used an alternative, analytical approach to 
quantify the effect of vital rate correlations on the tem-
poral variance of population growth by performing a life 
table response experiment (LTRE). Rees and Ellner 
(2009) provide an LTRE approximation that decom-
poses year- to- year variability in population growth into 
contributions from the variances and covariances of all 
vital rates, weighted by their sensitivities. Importantly, 

this LTRE method approximates only the variance of the 
asymptotic population growth rate associated with each 
year (i.e., the leading eigenvalue of each year- specific 
kernel or matrix, λ1,t). The realized growth rates (λt) 
deviate from these asymptotic values due to fluctuations 
in the population size structure, which does not reach a 
stable distribution in a stochastic environment. The var-
iance of λ1,t is a relevant but incomplete measure of sto-
chastic population dynamics because at each time step 
λt = λ1,t × reactivityt (Ellis and Crone 2013, McDonald 
et al. 2016). Here, λ1,t represents the long- term effect of 
vital rates, while reactivityt measures the transient 
response of a population, whereby reactivityt ≠ 1 when a 
population is not at its stable stage distribution (Neubert 
and Caswell 1997). We are not aware of an LTRE 
approximation for the actual realized growth rates λt, 
which is why we focus on the simulation approach. We 
present the LTRE decomposition of Var(λ1,t) in Appendix 
S5 (including additional methods) as a complement to 
our simulation results, because this captures the influence 
of demographic correlations in isolation from stochastic 
fluctuations in population structure, which can be a sub-
stantial source of variability in population growth (Ellis 
and Crone 2013, McDonald et al. 2016).

The effect of vital rate correlations on the long- term 
stochastic population growth rate (λs)

We estimated the effect of vital rate correlations on the 
long- term stochastic population growth rate (λs), moti-
vated by the predictions that negative and positive corre-
lations should tend to have positive and negative effects, 
respectively, on λs via their influence on Var(λt). The 
long- term stochastic population growth rate is given by 
the geometric mean of a long series of yearly population 
growth rates 

where N is total population size summed across sizes and 
stages (Caswell 2001, Rees and Ellner 2009). This series 
was provided by the last 45 000 values of year- to- year 
population growth rates (λt) from our simulations. As 
above, we compared λs between simulation treatments 
with all vital rate correlations on (λs,on) or off (λs,off). That 
is, vital rates either covaried according to empirical esti-
mates (Σ = diag(σ) P diag(σ)) or varied independently 
(Σ = diag(σ) I diag(σ)). To estimate the long- term fitness 
effect of vital rate correlations, we calculated the percent 
difference between these two simulation treatments, so 
that Δλs = 100 × [λs,on − λs,off]/λs,off. If vital rate correla-
tions buffer population growth against negative effects of 
variability, Δλs is positive; if correlations amplify the neg-
ative effects of variability, Δλs is negative. Note that in 
these simulations, temporal variances σ were constant 
across the two treatments, thus isolating demographic 
correlations per se from demographic variability. We 
created a posterior distribution of Δλs using 100 samples 

log(λS)=E

[
log

(
Nt+1

Nt

)]
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from the joint posterior distribution of the vital rate 
parameters. The distributions of Δλs values therefore 
reflect all of the uncertainty in our estimates of vital rate 
coefficients, including uncertainty in estimates of 
 temporal variances and correlations.

reSultS

(1)What are the sign, magnitude, and uncertainty of 
correlations between demographic vital rates?

Vital rate correlations varied greatly in both sign and 
magnitude, and uncertainty in their estimates was high 
(Fig. 1). Across all species and vital rates, there were only 
two correlations for which the posterior probability dis-
tribution indicated an unambiguous sign (their 95% 
credible interval excluded zero): the positive correlation 
between the probability of flowering and fertility in 
H. quinquenervis (mean ρ = 0.82; 95% CI = [0.51; 0.96]) 
and the negative correlation between growth and fertility 
in Or. purpurea (mean ρ = - 0.53; 95% CI = [−0.85; −0.05]). 
There were two additional correlations for which a 
majority of the posterior distribution indicated a 

consistent sign (but the 95% CI included zero): the pos-
itive correlation between the probability of flowering and 
fertility in Or. purpurea (mean ρ = 0.45; 95% CI = [−0.06; 
0.80]) and the negative correlation between growth and 
flower- to- fruit transition probability in H. quinquenervis 
(mean ρ = - 0.43; 95% CI = [−0.77; 0.03]). For the cactus 
Op. imbricata, there were no correlations for which the 
posterior distribution indicated a clear sign and most 
posterior modes were weak in magnitude. The positive 
correlations between flowering and fertility in H. quin-
quenervis and Or. purpurea indicate that years in which 
flowering was more likely were also years of greater seed 
production by flowering plants; this correlation was also 
positive, on average, for Op. imbricata, though there was 
greater uncertainty in its estimate (Fig. 1). On the other 
hand, the negative correlations indicate that years of 
greater reproductive effort or success were associated 
with smaller gains in size, and vice versa. In Or. purpurea, 
the negative correlation occurred between growth and 
the number of flowers produced, regardless of whether 
the flowers set fruit. In H. quinquenervis, the negative cor-
relation occurred between growth and floral abortion 
(high floral abortion [i.e., low flower- to- fruit transition] 

Fig. 1. Posterior probability distributions of vital rate correlations. Each panel represents a vital rate pair. Line types represent 
species.
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was associated with high growth, and vice versa). The 
remaining correlations, which were most of the correla-
tions, did not have a predominant sign within or across 
species, and their mean magnitude was usually small 
(Fig. 1).

The uncertainty of vital rate correlations was large 
compared to the uncertainty of other parameters 
(Appendix S2: Tables S1–S3). Because correlation esti-
mates are constrained between −1 and 1, the standard 
deviation of their posterior is constrained as well. On the 
other hand, most other parameters can vary between −∞ 
and ∞, or between 0 and ∞ (Appendix S2), so that the 
standard deviation of their posterior is unconstrained. 
Nevertheless, the standard deviation of these other 
parameters was similar to or smaller than the standard 
deviation of correlation estimates, suggesting relatively 
greater uncertainty in the correlations.

Time series for the intercepts of vital rate models 
(standardized to mean zero and unit variance, for visual 
comparison) demonstrate how vital rate correlations 
played out across years (Fig. 2). Using H. quinquenervis 
as an example (Fig. 2A), the intercepts for fertility and 
the probability of flowering are almost completely over-
lapping, reflecting their strong positive correlation 
(Fig. 1). For example, in 2002, few plants initiated flow-
ering stalks and those that did produced few inflores-
cences. On the other hand, the intercepts for growth and 
the flower- to- fruit transition vary in opposite directions, 
reflecting their negative temporal correlation. For 
example, 2003 and 2004 were the two worst years for 
flower viability and the two best years for growth, and 
1999 and 2008 were the opposite. Similarly, in Or. pur-
purea (Fig. 2C), 2007 was a year of unusually low fertility 
and unusually high growth, and 2011 and 2013 were the 
opposite. In Op. imbricata (Fig. 2B), 2011 was an excep-
tionally bad year for most vital rates, following an 
unprecedented four- day deep- freeze that brought record 

low temperatures. However, this strong forcing event was 
not sufficient to drive strong positive correlations because 
vital rate fluctuations were independent across the other, 
more benign years of the study.

(2)What are the effects of specific pairwise  
vital rate correlations on the year- to- year variability  

of population growth?

The proportional change in variance of year- to- year 
population growth rates (Var(λt)) caused by pairwise 
vital rate correlations varied idiosyncratically across 
species but was generally weak and centered near zero 
(Fig. 3). In fact, there was not one pairwise correlation, 
across all three species, whose effects on population 
growth variability were unambiguous in sign based on 
the posterior probability distribution. The directional 
effects of correlations were generally consistent with 
expectations, where negative correlations tended to 
reduce variability and positive correlations tended to 
increase it. For example, the strong positive correlation 
between flowering and fertility in H. quinquenervis tended 
to increase variability. However, the contributions of 
vital rate correlations to population growth variability 
did not necessarily correspond well to the magnitude of 
the correlations. This reflects the fact that the effect of a 
correlation depends on both its absolute magnitude and 
the sensitivities of population growth to the two vital 
rates involved, highlighting the importance of vital rate 
sensitivities and their absolute temporal variability in 
addition to correlations (Appendix S5: Eq. S.3a,b, Table 
S1). For example, in H. quinquenervis, the negative corre-
lation between growth and flower- to- fruit transition 
(ρ = - 0.43) decreased Var(λt) by just 3% on average. 
Similarly, in the other two species, the largest effects on 
Var(λt) did not correspond to the strongest correlations. 
Results from Or. purpurea were particularly surprising in 

Fig. 2. Year- specific intercepts of vital rate models (e.g., Eq. 7). Line colors represent different vital rates. Panels show results 
for Helianthelia quinquenervis (A), Opuntia imbricata (B), and Orchis purpurea (C). For each species, we standardized the intercept 
αVR

t
 for each vital rate VR so that αVR

t,standardized
=(αVR

t
−αVR

mean
)∕αVR
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.
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that most vital rate correlations had little effect on 
Var(λt). Moreover, the strongest mean contribution to 
Var(λt) (−18%) is made by a relatively weak correlation 
between flowering and flower- to- fruit transition 
(ρ = - 0.16; Fig. 1). Finally, the posterior distributions of 
the change in Var(λt) were extremely wide, especially in 
H. quinquenervis and Op. imbricata, reflecting uncer-
tainty in our estimates of the vital rates and their vari-
ances and correlations. These posterior distributions 
always included zero, and the uncertainty intervals 
ranged from −70% to +260%.

(3)Does the net effect of all vital rate correlations 
 increase or decrease year- to- year variability in 

 population growth?

On average, the net effect of all combined vital rate cor-
relations increased the year- to- year variability of popu-
lation growth in H. quinquenervis and Op. imbricata, and 

caused no change in variability for Or. purpurea (Fig. 4A). 
Yet, uncertainty in these effects was high, posterior belief 
was distributed across both positive and negative values, 
and all credible intervals included zero. According to the 
simulations based on the mean of the joint posterior of 
parameter estimates (dots in Fig. 4A), in H. quinquenervis 
and Op. imbricata the variance- amplifying effects of pos-
itive correlations generally outweighed the variance- 
reducing effects of negative correlations, but correlations 
had virtually no effect on variance in Or. purpurea. 
In  particular, vital rate correlations changed the varia-
bility of population growth, on average, by +20.8% in 
H. quinquenervis, +22.51% in Op. imbricata, and −1% in 
Or. purpurea. However, the credible intervals of posterior 
estimates were extremely wide, with a range of values that 
span from −71% to +157%.

In contrast to the simulation experiments, the LTRE 
decomposition of variability (Var(λ1,t)), excluding the 
influence of non- equilibrium size structure dynamics, 

Fig. 3. Change in the variance (ΔVar) of year- to- year population growth rates (λt) caused by pairwise vital rate correlations. We 
present the percent difference between simulations accounting for vital rate correlations (“on”) and simulations where vital rates 
varied independently (“off”). Each panel represents the percent change in variance caused by the correlation of a specific vital rate 
pair. This percent change is 100 × [Var(λt,on) − Var(λt,off)]/Var(λt,off). Gray levels represent species. Box- and- whisker plots represent 
values produced by simulations run using 100 random samples from the joint posterior distribution of model parameters. Lines in 
the middle of each box are medians, box limits show the first and third quartile, whiskers extend beyond box limits 1.5 times the 
interquartile range, and open points are outliers.
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suggested that, for all three species, vital rate correlations 
should consistently buffer the variability of growth rates, 
on average (Appendix S5: Fig. S1). LTREs showed an 
average decrease in Var(λ1,t) for H. quinquenervis 
(−8.59%), Op. imbricata (−4.26%), and Or. purpurea 
(−17.37%). However, just like the estimates from simu-
lation experiments, the uncertainty associated with the 
LTRE estimates was large: posterior probabilities were 
distributed across positive and negative effects of corre-
lations, and credible intervals included zero (Appendix 
S5: Fig. S1).

(4)What is the net effect of vital rate correlations on the 
long- term stochastic population growth rate (λs)?

Across all three species, the effect of vital rate correla-
tions on long- term stochastic population growth rate (λs) 
was small in magnitude and virtually zero, on average 
(Fig. 4B). The credible intervals of λs show very small 
effects that range from −0.49% to +0.88% in H. quin-
quenervis, from −0.01% to +0.03% in Op. imbricata, and 
from −0.25% to 0.25% in Or. purpurea. On average, vital 
rate correlations changed the stochastic population 
growth rate by +0.17% in H. quinquenervis, +0.002% in 
Op. imbricata, and −0.01% in Or. purpurea.

Posterior distributions for the absolute values of λs are 
shown in Appendix S6. Results indicated that the 
Op. imbricata population is almost certainly declining, 
because no posterior sample produced λs values greater 
than 1.0 (95% CI = [0.93; 0.99]). H. quinquenervis is also 
projected to decline, though the uncertainty in its 

stochastic population growth rate included the possi-
bility of positive growth (95% CI = [0.91; 1.04]). On the 
other hand, the posterior distribution of λs in Or. pur-
purea exceeded 1.0, so this population is expected to grow 
(95% CI = [1.05; 1.10]). All of these predictions for pop-
ulation viability were insensitive to whether demographic 
correlations were on or off (Appendix S6). Thus, qualita-
tively and even quantitatively, explicit accounting of vital 
rate correlations did not change our understanding of the 
dynamics and viability of these populations.

diSCuSSion

Natural populations encounter stochastic fluctuations 
in demographic vital rates from year to year. Theory 
 predicts a potentially important role for correlated vital 
rate fluctuations in long- term population viability 
(Tuljapurkar 1982, Doak et al. 2005). Yet, empirical 
understanding of whether vital rate correlations are suf-
ficiently common and of sufficient magnitude to mean-
ingfully affect population dynamics has lagged behind 
theory. Our work provides new insight into the occur-
rence and consequences of vital rate correlations in 
natural populations, revealing both consistencies and 
idiosyncrasies across long- term data sets from three per-
ennial plant species. Our most important conclusion is 
that, while a few strong vital rate correlations were 
detected from long- term data, overall, correlations had 
virtually no influence on the stochastic population growth 
rate or on inferences regarding population viability. 
Thus, if results from these three study populations are 

Fig. 4. The effect of vital rate correlations on the variance of year- to- year population growth rate (λt, panel A), and on long- 
term stochastic population growth rate (λs, panel B). We present percent changes in both quantities. In panel A, ΔVar(λt) is 
calculated as in Fig. 3. Similarly, in panel B, Δλs is 100 × [λs,on − λs,off]/λs,off. Black dots refer to simulations results from population 
models built using the mean values of the parameters’ joint posterior. Box- and- whisker plots show the values calculated using 100 
random samples from the joint posterior distribution of vital rate parameters. Box limits, whiskers, and open dots are as in Fig. 3. 
Dotted lines delimit the upper and lower bounds of the 95% credible intervals of posterior values.
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broadly representative, the non- trivial task of quanti-
fying correlations and incorporating them into demo-
graphic models may often be unnecessary for drawing 
qualitative and even quantitative inferences regarding 
population dynamics in stochastic environments.

Correlations may be positive or negative, with the sign 
reflecting different biological mechanisms. Our study 
suggests certain correlations may be influenced by 
trade- offs between vegetative growth and reproductive 
function. This is suggested by the negative correlations 
between growth and fertility in Or. purpurea, and between 
growth and flower- to- fruit transition in H. quinquenervis. 
While negative correlations do not necessarily represent 
life history trade- offs (Knops et al. 2007), detailed studies 
of Or. purpurea (Jacquemyn et al. 2010, Miller et al. 2012) 
provide evidence for a cost of reproduction at the level of 
individual plants consistent with our current findings. 
Trade- offs between reproductive and somatic life history 
functions, usually documented at the individual level, are 
common in plants (e.g., Harper 1977, Woodward et al. 
1994, Silvertown and Dodd 1999, Obeso 2002). Our 
results suggest that these trade- offs can generate negative 
temporal vital rate correlations in plant populations, 
such that years of high reproductive effort or success are 
years of poor growth, and vice versa (Fig. 2). However, 
the remaining vital rate correlations were generally weak 
and varied idiosyncratically within and across species.

The lack of consistent pattern in the direction and mag-
nitude of vital rate correlations is supported by some lit-
erature on plants (Evans et al. 2010, Jacquemyn et al. 
2012, Davison et al. 2013) and animals (Doak et al. 1994, 
Reed and Slade 2006a, b). For example, several studies 
that linked climatic fluctuations to plant demography did 
not find common responses of vital rates to climate 
drivers (Clark et al. 2011, Dalgleish et al. 2011, Adler 
et al. 2012, Williams et al. 2015), suggesting that vital 
rates respond individualistically to climatic variability. 
On the other hand, two comparative studies that focused 
on animals reported predominantly positive temporal 
correlations between vital rates (Saether and Bakke 2000, 
Morris et al. 2011). However, most of the positive corre-
lations reported in these matrix modeling studies occurred 
between the survival of different size classes: for example 
between survival of juveniles and adults. These positive 
correlations across size classes are implicit in our popu-
lation projection models because they are built into the 
random intercepts of GLMMs. In our GLMMs, a 
“good” year for survival is assumed to be good across all 
sizes, which makes our estimation of correlations more 
conservative than these previous studies.

Our estimation process revealed substantial uncer-
tainty, particularly for correlations whose posterior 
mode was small in magnitude, where posterior weight 
was distributed across positive and negative values 
(Fig. 1). The uncertainty in the estimates of correlation 
was larger than the uncertainty of most other parameter 
estimates (Tables S1–S3). Such high uncertainty indicates 
that even one decade of data provide low power when 

estimating correlations among vital rates. This is perhaps 
not surprising: the sample size necessary to precisely 
estimate a correlation of 0.1 is ~250 (Schönbrodt and 
Perugini 2013), far longer than any complete demo-
graphic data set that we know of. Thus, even our unu-
sually long- term studies may not have provided enough 
information to unambiguously detect real but weak cor-
relations, highlighting the importance of explicitly 
accounting for uncertainty. Rather than dismiss weak 
correlations outright, our Bayesian approach exploited 
the full posterior distributions of all vital rate correla-
tions, even those centered near zero. This approach pro-
vides a probabilistic assessment of how correlations 
affect stochastic population dynamics, given our confi-
dence in the estimation process. We expect that uncer-
tainty in the correlation coefficients, particularly the 
weak ones, will become better resolved as these ongoing 
demographic studies continue and more data accumulate. 
Nevertheless, given that most of the correlation estimates 
and their effects on stochastic population growth were 
centered at or near zero, we expect our conclusions to 
stand, even with better resolved correlations. Importantly, 
despite the uncertainty in estimation of the vital rate cor-
relations, we are quite certain that their effects on the 
stochastic growth rate are negligible, given the posterior 
distributions of Δλs (Fig. 4B).

Our simulations suggested that vital rate correlations 
could have potential to modify long- term population 
growth because their combined effect, on average, 
increased the variability of year- to- year population 
growth (Var(λt)) in two species (Fig. 4A). For these 
species, positive correlations apparently outweighed neg-
ative correlations, causing on average an increase in var-
iability, though the uncertainty in correlations contributed 
to wide posterior distributions for their effects on var-
iance. Taken in isolation, these results could be inter-
preted to reinforce the importance of vital rate correlations 
as modifiers of demographic variability (Tuljapurkar 
1982, Boyce et al. 2006, Tuljapurkar et al. 2009). However, 
our simulations of stochastic population dynamics 
revealed consistently that vital rate correlations had vir-
tually no effects (<1% change) on the stochastic growth 
rate, λs (Fig. 4B); this was true for Or. purpurea, where 
correlation caused, on average, no change in Var(λt) but 
also, more surprisingly, in H. quinquinervis and 
Op. imbricata, where correlations caused a mean increase 
in Var(λt) of 21% and 23%, respectively. This apparent 
discrepancy is likely explained by the fact that a large 
proportional effect of correlations on year- to- year varia-
bility need not translate into a large effect on λs. We pre-
sented percent changes in Var(λt) and λs in order to 
directly compare results across species. However, the 
stochastic population growth rate is sensitive to absolute 
rather than relative changes in Var(λt) (Lewontin and 
Cohen 1969). If absolute variability is already small then 
an increase of 10–20% may have negligible effects on λs. 
For example, Morris et al. (2011) attributed very 
weak effects of vital rate covariation and temporal 
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autocorrelation on stochastic population growth of pri-
mates, effects comparable in magnitude to our results 
from perennial plants, to low baseline demographic var-
iability. We speculate that vital rate correlations may 
generally have negligible effects for populations already 
buffered against temporal variability, as long- lived 
organisms tend to be (Morris et al. 2008).

Another surprising result from our simulations was the 
direction of correlation effects on year- to- year variability 
(Fig. 4A) relative to the direction of effects on λs (Fig. 4B). 
While none of these effects were strong, the mean increase 
of Var(λt) in H. quinquinervis and Op. imbricata was not 
associated with a mean decrease in λs, as would be pre-
dicted by classic theory. We speculate that this result may 
have been caused by the canonical link functions that we 
used to model temporal variability in vital rates (e.g., 
Eqs. 2b, 3b, 4b). These link functions are standard tools 
for the development of stochastic IPMs (Rees and Ellner 
2009) but they introduce some nonlinear averaging. 
Canonical link functions implicitly assume that demo-
graphic processes respond nonlinearly to random vari-
ation. As a consequence, nonlinear averaging might arise 
whereby the value of a vital rate in an average year is 
greater or less than the value of the vital rate averaged 
across years. The magnitude of this difference depends on 
the magnitude of year- to- year variability and on the con-
cavity of the link function (Ruel and Ayres 1999). For 
instance, the log- link function we used in our fertility 
models (Eq. 4b) is concave up. As a result, an increase in 
temporal variation could potentially increase average fer-
tility and, potentially, stochastic population growth rate 
(Barraquand and Yoccoz 2013). A deeper analysis of this 
issue falls outside the scope of our study, but we suggest 
that it warrants greater attention in the methodological 
literature on stochastic demography. Given the small 
magnitudes of the effects we detected (Fig. 4B) any con-
tributions of nonlinear averaging in our study are unlikely 
to affect our qualitative conclusions.

Our λs results suggest that vital rate correlations should 
have negligible evolutionary implications in our three 
species. Vital rate correlations are expected to modulate 
the evolution of demographic buffering, whereby 
selection decreases the temporal variance of vital rates 
(Pfister 1998, Morris and Doak 2004). In particular, pos-
itively correlated vital rates, by increasing Var(λt) and 
decreasing λs, should promote selection for lower tem-
poral variance in vital rates; vice- versa for negatively cor-
related vital rates (Doak et al. 2005). However, because 
in our three species vital rate correlations have negligible 
effects on λs, such correlations should have a similarly 
minor effect on the evolution of demographic buffering.

Lastly, the contrast between our simulation experiments 
(Fig. 4A) and LTRE analyses (Appendix S5: Fig. S1) high-
lights a role for stochastic fluctuations in size structure as 
a potentially important component of demographic varia-
bility, as has been recently emphasized (Ellis and Crone 
2013, McDonald et al. 2016). The LTRE approach used 
year- specific asymptotic population growth rates, λ1,t, as a 

proxy for the realized year- to- year population growth rate, 
λt. However, the constant fluctuations in size structure that 
are characteristic of populations in stochastic environ-
ments may cause realized growth rates (λt) to deviate from 
expectations based solely on vital rates (λ1,t). The rationale 
for using λ1,t is that these fluctuations are deviations from 
a statistically stable size structure (Tuljapurkar 1990). 
Accordingly, these two approaches were qualitatively con-
sistent in that they both revealed large uncertainty in the 
effects of vital rate correlations on year- to- year variability, 
with posterior distributions centered near zero. However, 
the LTRE decomposition of the variance in λ1,t showed 
that mean effect of correlations tended to decrease var-
iance for all three species, while the simulation analysis of 
variance in λt indicated that correlations tended to increase 
variance in two species with no effect on the third. These 
differences suggest that fluctuations around the statisti-
cally stationary size distribution add noise to λt, and 
therefore weaken the direct effect of fluctuations in vital 
rates represented by λ1,t. This finding agrees with two 
recent comparative studies based on matrix population 
models, which found that the variance in realized growth 
rates (λt) caused by fluctuations in size structure was often 
larger than the variance caused by fluctuations in vital 
rates (Ellis and Crone 2013, McDonald et al. 2016). Our 
results suggest that the role of transient dynamics in mod-
ulating the effect of vital rate correlations on stochastic 
population dynamics deserves further empirical and theo-
retical study.

An important caveat of our study is that, despite the 
long- term nature of our data, our inferences are limited 
because they are based on only three species with one 
population each. The geographic limitation of our study 
may bias our estimates of demographic variation and 
covariation. The literature increasingly suggests large 
geographic variation in vital rates across populations of 
the same species (Doak and Morris 2010, Schindler et al. 
2010, Eckhart et al. 2011, Villellas et al. 2015). Given 
these limitations, it is worth considering how generally 
we may conclude that vital rate correlations do not mean-
ingfully affect stochastic population dynamics. We inten-
tionally focused on species with similar life histories. Our 
three focal species share complex iteroparous perennial 
life histories, including overlapping generations, extended 
reproductive delays, long- lived reproductive stages, and 
demographic “storage” in the form of seed banks or 
dormant stages. We speculate that our conclusions 
regarding the importance of vital rate correlations may 
apply broadly to organisms with similarly complex life 
cycles, where the suite of life history processes operating 
simultaneously may dilute the importance of any single 
process or pair of processes. Indeed, our results reinforce 
previous studies of long- lived plants and animals that 
found weak effects of vital rate covariation (Jongejans 
et al. 2010, Morris et al. 2011). At the other, simpler 
extreme of life cycle complexity, vital rate correlations 
may be more consequential. For example, in an unstruc-
tured population governed solely by birth and death 
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rates, strong correlation between these two processes 
may importantly affect population dynamics in a var-
iable environment. These hypotheses regarding the role 
of life cycle complexity are well suited to theoretical 
study, which we suggest would be a fruitful area for 
further work.

ConCluSion

In this study, we show that temporal vital rate correla-
tions in three perennial plant species are usually weak but 
occasionally strong, and in both directions. While vital 
rate correlations have potential to modify year- to- year 
variability and thus stochastic population growth, we 
found that correlations had virtually no effect on sto-
chastic population dynamics and did not modify our 
inferences of population viability. Explanations for the 
negligible effects of vital rate correlations may include the 
predominance of weak correlations, low sensitivities and 
low variability of the few vital rates that were strongly 
correlated, and fluctuations in size structure over- riding 
fluctuations in vital rates. Our results offer potentially 
good news for population ecologists, because the process 
of estimating and modeling vital rate correlations is data- 
intensive and computationally nontrivial.
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