
441

Section IV

Applied Ecology of Invertebrate Pathogens



Ecology of Invertebrate Diseases, First Edition. Edited by Ann E. Hajek and David I. Shapiro-Ilan
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.

12

12.1  Introduction

Mechanistic models of species interactions and disease transmission (e.g., Kermack and 
McKendrick, 1927; Rohani et al., 2002; Wootton, 2005) play an important role in help-
ing us understand the patterns we see in nature and the processes responsible (Kendall, 
2015). The importance of grounding ecological experiments in a testable theoretical 
framework is often understated (Scheiner, 2013), but can prove fruitful when done cor-
rectly. With regard to insect epizootics, interest in insect pathogens can be traced back 
to ancient China, where silkworm populations started to succumb to a then unknown 
pathogen. While the implications for infected individuals were obvious, the culprits 
were not discovered for centuries (Cory and Myers, 2003). In fact, it was only a few 
decades ago that insect pathogens were linked, via mechanistic models, to the boom‐
and‐bust dynamics often seen in naturally occurring insect populations (Anderson and 
May, 1980). Early on, Brown (1987) described the importance of considering the theo-
retical perspective and using simulation models to gain a better understanding of epi-
zootic dynamics; this field continues to grow (e.g., Onstad and Carruthers, 1990; Dwyer 
et al., 2000; Stuart et al., 2006; Hesketh et al., 2010; Shapiro‐Ilan et al., 2012). The ideas 
and concepts associated with model formulation and testing have also continued to 
develop. These newly developed tools, along with standard analytical tools, will prove 
to be incredibly useful to any individual interested in insect epizootics, regardless of 
their training or research focus.

In general, epizootic models tend to focus on either the short‐term dynamics associ-
ated with a single epizootic (e.g., Dwyer et al., 1997) or the long‐term population‐level 
consequences of multiple epizootic events (e.g., Dwyer et al., 2004). By combining mod-
els with data regardless of the time scale considered, the study of insect epizootics has 
led to a better understanding of the processes responsible for driving the population 
dynamics of outbreaking insects. From a management/application perspective, the con-
struction of mechanistic models helps to highlight the potential benefits or unforeseen 
consequences of using insect pathogens to control population outbreaks (Hochberg, 
1989; Reilly and Elderd, 2014). From a broader perspective, insect epizootics have 
helped to develop both models and ideas that are central to a great deal of ecology and 
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to address fundamental ecological questions such as what causes populations to cycle 
(Barraquand et al., 2017). These insights continue to develop as new data are collected 
and models are refined.

Regardless of the approach one takes toward research, everyone uses models. There 
are three basic categories of models, which are not necessarily mutually exclusive: 
empirical, theoretical, and simulation‐based (Hobbs and Hooten, 2015). The vast 
majority of science is conducted using empirical approaches. The empirical approach 
describes relationships and patterns between variables that have been measured and is 
exemplified by familiar statistical tools like regression and analysis of variance. Empirical 
approaches summarize relationships from a phenomenological perspective and not 
necessarily a mechanistic one. For example, in an empirical setting, a regression con-
ducted on disease incidence and some independent variable (e.g., host density) may 
show that disease incidence increases as the independent variable increases. Here, the 
slope simply describes the rate of change or the pattern observed in the data, but, in this 
example, the model does not explicitly imply a mechanism. This measured relationship 
advances our understanding of the epizootic process but does not describe the mecha-
nism driving the process.

On the other hand, theoretical models are mechanistic in nature. Historically, theo-
retical models have been considered overly simplistic, since they often focus on only a 
single interaction, or on a limited number of parameters. While theoretical models have 
provided a great deal of insight into ecological dynamics (e.g., the Lotka–Volterra equa-
tions), strictly theoretical approaches alone can easily become focused on the elegance 
of the method and lose sight of the ecology involved (Levin, 2012). However, when these 
models are confronted with data, the range of possible behaviors (e.g., population cycles 
or no cycles) quickly narrows and the models become quite powerful. Simulation‐based 
models also take advantage of data that has been collected, but these models contain 
multiple interactions and can easily become relatively complex. Thus, simulation mod-
els are parameter‐rich or high‐dimensional. They often fit the data well, but it can be 
difficult to determine which of the many parameters drives the observed patterns 
(Elderd et al., 2006). Models constructed to understand epizootic dynamics or other 
ecological processes do not have to fall into a single category and may draw from mul-
tiple categories (Hobbs and Hooten, 2015). Thus, the three categories serve as useful 
heuristics for thinking about model development and linking models to data.

These three modeling perspectives are often seen as strictly distinct from other. 
However, this viewpoint draws on historical precedence and does not take into account 
how prevalent it has become to combine mechanistic models of increasing complexity 
with data. In the world of modeling insect epizootics, when Anderson and May (1980) 
compared theoretical model outcomes to empirical data, they opened up a new window 
from which to see the world. In their frequently cited works, Anderson and May (1979, 
1980) combined ideas from classic predator–prey models and susceptible–infected–
recovered (SIR) models, which essentially combined long‐term dynamic models with 
short‐term epizootic models, to understand natural observations of insect populations. 
Using this approach, Anderson and May (1980) demonstrated that pathogens could be 
responsible for the boom‐and‐bust cycles associated with the long‐term dynamics of 
insect populations. They continued to expand upon the mechanisms responsible for 
short‐term epizootic events and long‐term population dynamics for species controlled 
by pathogen outbreaks (Anderson and May, 1981). Thus, they started a rich literature in 



445

Modeling Insect Epizootics

which the idea of combining models with data serves as a cornerstone for understand-
ing insect epizootics.

In their original work, Anderson and May (1980) showed that insect population mod-
els that invoked host–pathogen interactions qualitatively displayed the same dynamics 
as observational data collected in the field. Following this, more rigorous methods of 
analyzing observational time series and field data began to take hold. These methods 
often advocated a likelihood‐based approach that simply asked how likely were the data 
that had been collected to be correct, given the predicated dynamics from the model. If 
the model did not do well in terms of predicting the actual data, it was either set aside 
or refined, and the investigative process continued. The model, in this instance, can be 
considered equivalent to a hypothesis that is tested with data. The framework for this 
likelihood‐based approach culminated in the influential book, The Ecological Detective 
(Hilborn and Mangel, 1997), which advocated not only confronting models with data 
but also testing multiple models at once. One method for doing so, which comes from 
the field of information theory, is the Akaike information criterion (AIC) (Burnham and 
Anderson, 2002). The AIC operates on the principle of parsimony to choose the best 
model. The most complicated model (i.e., the model with the most parameters) will 
always fit the data better (i.e., the model will be more likely) than less complicated ones. 
However, fitting the more complicated model comes at a cost, because a more compli-
cated model will do a poor job of predicting the next set of data to be collected. Thus, 
the AIC balances between model fit and model complexity (Section 12.4.2). Just as the 
AIC draws upon likelihood‐based methods, so Bayesian methods are based on likeli-
hood approaches. Bayesian methods, particularly hierarchical Bayesian models, have 
become increasingly popular and provide the flexibility to analyze data and compare 
multiple models (Hobbs and Hooten, 2015). For a worked example from the Bayesian 
perspective, see Section 12.5.1. Overall, a lot of progress has been made since the initial 
explorations of purely theoretical models and the fitting of empirical models to data, 
and this progress will continue in the future. While likelihood‐based frameworks work 
well for short‐term epizootic events, different tactics are often required when examin-
ing long‐term boom‐and‐bust cycles (Section 12.6.2) (e.g., Kendall et al., 1999; Turchin, 
2003; Dwyer et al., 2004). Together, each of the methods mentioned here that focuses on 
combining models with data represents a suite of tools for understanding what drives 
epizootics over both the short and the long term.

12.2  The Pathogen and its Hosts

While there are a number of diseases described throughout this book that have a great 
deal of impact on invertebrate populations and epizootic dynamics, I will focus on 
diseases caused by baculoviruses (see also Chapter 7). Although the focus here is on 
baculoviruses, models have been developed to describe epizootic dynamics for a 
variety of insect pathogens. These include, but are certainly not limited to, fungal 
pathogens (e.g., Edelstein et  al., 2005; Scholte et  al., 2005; Hesketh et  al., 2010) and 
nematodes (e.g., Stuart et  al., 2006). For example, Scholte et  al. (2005) used an 
enthomopathogenic fungal model to highlight the efficacy of a vector control method 
to decrease the population of a malaria vector, Anopheles gambiae. Thus, even though 
baculoviruses provide the biological motivation for model development here, the 
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methods outlined can be applied to many other biological systems. However, since all 
good mechanistic models need to be motivated by the biology of the system, baculovi-
ruses represent a good place to start, given their importance in driving epizootic 
dynamics (Cory and Myers, 2003) and the use of mechanistic models in describing 
these dynamics (e.g., Dwyer et  al., 1997; Elderd et  al., 2013). To reiterate, while the 
biology and the associated models throughout draw on baculoviruses as examples, 
the methodologies discussed have quite a broad use in enhancing our understanding of 
epizootic dynamics as a whole.

Baculovirus infections begin when a susceptible individual consumes occlusion bod-
ies (OBs), often containing multiple copies of the virus. If enough OBs are consumed, 
the individual becomes fatally infected. Sublethal or covert infections also occur (Roy 
et al., 2009), but at relatively low levels (Myers et al., 2000). Covert infections may con-
tribute to the persistence of pathogens at low host densities (Roy et al., 2009) and func-
tion in a manner similar to vertical transmission between mothers and their offspring, 
which also allows pathogens to persist at relatively low host densities (Anderson and 
May, 1981). However, covert infections likely do not drive the boom‐and‐bust cycles 
associated with epizootic dynamics. If a lethal rather than a sublethal infection occurs, 
the infection process moves through a number of stages before the death of the host, 
which can release millions of OBs into the environment; transmission resulting from a 
sublethal infection would be minimal in comparison unless that infection became lethal.

In Lepidoptera, the infection process begins when a larva consumes foliage on which 
OBs reside. Upon entering the midgut, the outer protein coat of the OB dissolves, 
releasing the virions. The virions then infect the host’s midgut cells and the infection 
eventually becomes systemic. After a period of time, the virus essentially liquefies the 
internal structure of the host as a result of producing more virus. Upon the host’s death, 
the outer larval integument splits open and releases virus into the environment to begin 
the infection process again (Cory and Hoover, 2006; Elderd, 2013). Over time, the virus 
degrades due to ultraviolet (UV) light exposure.

An epizootic can begin when first‐instar larvae become infected (Dwyer et al., 1997). 
However, there is a delay between infection of the first instars and release of the next 
round of virus. During this delay, which varies depending upon the virus and the species 
infected, the healthy larvae molt to second, third, or fourth instars. Due to the baculovi-
rus infection, the infected individuals do not molt (Miller, 1997). After the infected 
larvae die and OBs are released on to the surrounding leaf tissue, the larger healthy 
larvae that have developed into later instars consume the virus, since it now resides on 
the leaf tissue on which they are feeding, and disease prevalence increases. The epizo-
otic ends due to either larval pupation or “epizootic burnout,” which occurs when there 
is a lack of infected individuals in the population to continue the spread of the disease 
(Dwyer et al., 2000; Fuller et al., 2012). The delay between infection and host death has 
important consequences for both the short‐ and the long‐term dynamics of pathogen‐
driven host populations, such as lepidopteran species prone to epizootics.

While observational data in these systems can be readily collected, baculovirus sys-
tems also lend themselves to experimental approaches that test hypotheses surrounding 
transmission dynamics. To initiate an experiment that follows the natural progression 
of a baculovirus‐driven epizootic, first instars can be lethally infected with a dose of 
OBs. Once infected, the first instars are confined on an experimental plant or branch 
using mesh bags. Mesh bags stop larvae from escaping and prevent the virus from 
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degrading due to UV light exposure. The infected individuals then die and, after death, 
release OBs on to the leaf tissue. Once the first instars have died, healthy third or fourth 
instars are placed into the mesh bag. These individuals are then allowed to feed for a 
period of time. Afterwards, the larvae are collected and reared in individual cups until 
death or pupation (Dwyer et  al., 1997; Elderd et  al., 2008; Elderd and Reilly, 2014). 
Infection can be easily diagnosed visually given the drastic manner in which the infec-
tion process slowly consumes the larva. Additionally, since the OBs are quite large and 
can be seen under a light microscope (Elderd, 2013), any potential infections can be 
readily confirmed. In the simplest approach, one can manipulate the amount of patho-
gen in the system (the independent variable) and record the fraction of insects surviving 
(the dependent variable). Thus, experiments that manipulate multiple factors such as 
temperature and the amount of pathogen in the system (Elderd and Reilly, 2014) can be 
readily performed. The data produced can then be combined with any suite of models 
to test the associated hypothesis.

12.3  Modeling Disease Transmission: A Single Epizootic

The models used to understand short‐term epizootic dynamics associated with a single 
event can be traced back to Kermack and McKendrick (1927), who developed the SIR 
model to describe epidemic dynamics. Instead of SIR dynamics, baculovirus systems 
consist of susceptible individuals, infected individuals, and pathogen, since there is little 
evidence that infected individuals recover. If the simplifying assumption is made that all 
baculovirus infections are lethal, we need only consider the number of susceptibles and 
the amount of pathogen in the system, since all infected individuals eventually become 
pathogen (Dwyer et al., 2000). This assumption is met by the experimental methods 
described earlier. Mathematically, the equation for the susceptible larvae S  takes the 
form of the following differential equation:

 
dS
dt

SV= −β .  (12.1)

Here, the change in susceptible larvae over time is simply a product of the disease trans-
mission coefficient β  times the number of susceptibles S  and the amount of virus in 
the system V . The transmission parameter β  encompasses the whole of the infection 
process and can be thought of as the fraction of encounters between the virus and a 
susceptible larva that leads to an instantaneous infection. As with all models (empirical, 
mechanistic, or simulation‐based), it is important to consider all the assumptions. The 
main ones for the model of susceptible populations given here are that per capita trans-

mission i.e., 1
S

dS
dt





  is linear and that all individuals are equally susceptible to becom-

ing infected. Relaxing this assumption, or changing the model structure to better fit the 
biology of the system and the data, leads to new insights into the transmission process. 
Equation 12.1, however, serves as a useful starting point.

By integrating equation 12.1 and using experimental data, estimates of the transmis-
sion rate β  can be easily calculated. In an experiment, the amount of virus or the 
number of cadavers in the system at the beginning of the experiment V ( )0  is known, as 
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is the initial number of susceptibles in the experimental treatment S( )0 . Here, 0 refers 
to the start of the experiment. After conducting the experiment until time T , the num-
ber of susceptible individuals (i.e., the number of individuals that pupate rather than die 
from an infection) is also known, S T( ) . These data can be easily plugged into the inte-
gral of equation 12.1, which is integrated from time 0  to T . The integral of equation 
12.1 is simply:

 
− ( )

( )








 = ( )ln

S T
S

V T
0

0β .  (12.2)

Thus, by regressing the cadaver density against the negative natural log of the fraction 
uninfected ( − ( ) ( ) ln /S T S 0 ) with no intercept term, an estimate of the transmission 
rate can be calculated directly from the data (Elderd et al., 2008); this is simply the slope 
of the line (Fig. 12.1, dashed line). But unlike standard regression models, which calcu-
late the slope (and the intercept) as a phenomenological relationship, here, the slope is 
linked directly to the disease transmission rate β . Thus, the mechanism can be explic-
itly inferred from the mathematical model of the process.

12.3.1 Phenomenological and Mechanistic Models

While equation 12.1 represents a simple model of transmission dynamics, it is a reason-
able representation of epizootic dynamics, and it and similar forms have been used 
extensively (e.g., Hochberg, 1989; Hochberg and Waage, 1991; Boots, 2004). However, 
the linear model does not always fit the data collected. Some baculovirus epizootic data 
show a decidedly nonlinear or curvilinear fit (Dwyer et  al., 1997; Elderd and Reilly, 
2014), such that infection rates at higher pathogen levels are less than expected if the 
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equation 12.5. The solid lines represent populations in which risk varies across individuals. The dashed 
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linear model held true (equation 12.1). A simple solution to this problem would be to 
raise the number of susceptibles or the amount of virus by a power (Hochberg, 1991), 
which would result in a nonlinear model that could better fit the data. This phenomeno-
logical model then takes the form:

 
dS
dt

S Vg h= −β .  (12.3)

Here, g  and h  are the nonlinear effects on transmission of susceptible and infected 
population densities, respectively (Hochberg, 1991). However, while this power model 
will fit the nonlinear data better, the biological mechanism or mechanisms driving the 
nonlinear fit remain unknown. In this instance, what exactly does g  or h  mean from a 
biological standpoint?

A potential mechanism that may drive the nonlinearity in infection rates goes back to 
one of the main of assumptions of the linear model: that all individuals have the same 
transmission rate β . In Dwyer et al. (1997), the authors assumed that individuals differ 
in their susceptibility to virus. Essentially, some individuals are more susceptible than 
average and others are less susceptible than average. Thus, there was not a single trans-
mission rate, but a mean transmission rate with some variability about the mean rate. 
Therefore, the transmission rate became a distribution rather than a single point esti-
mate. The modified equation accounting for differences in susceptibility (i.e., heteroge-
neity in the transmission rate) thus becomes:

 

dS
dt

S t
S

SV= − ( )
( )









β

0

2C

.  (12.4)

Here, β  is the mean transmission rate. The transmission rate is scaled by the ratio of 
the number of susceptibles currently in the population S t( )  divided by the number of 
susceptibles at the start of the epizootic S( )0 . The ratio is raised to the square of the 
coefficient of variation C  associated with the transmission rate. Integrating equation 
12.4 results in:

 
− ( )

( )








 = + ( )( )ln ln

S T
S C

C V T
0

1 1 02
2β .  (12.5)

Here, T  is once again the time that the experiment ran. For equation 12.5, instead of 
estimating just β  from the data, two parameters need to be estimated, β  and C . For 
any single level of heterogeneity, at low pathogen levels, highly susceptible individuals 
become infected and transmission rises quickly (Fig. 12.1, solid lines). However, as 
pathogen levels increase, transmission tapers off, since only highly resistant individu-
als remain in the population. As the heterogeneity in the population increases, the 
coefficient of variation C  increases, which results in fewer individuals becoming 
infected at the end of the epizootic as pathogen levels increase (Fig. 12.1). If, instead, 
C  decreases and goes to zero (i.e., little variability in C ), the dynamics become similar 
to the linear equation (equation 12.2). While equation 12.5 was developed with epizo-
otics in mind, it borrows from work by Anderson and May (1991) on HIV spread and 
how varying contact rates influence HIV transmission. Thus, equation 12.4 represents 
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another example of the give and take between epizootiological and epidemiological 
research.

Once a model is developed, it is important to test it. Dwyer et al. (1997) exemplified 
this approach by showing the stepwise process of confronting models with data. In a 
series of experiments on the invasive gypsy moth (Lymantria dispar) and its species‐
specific baculovirus, Lymantria dispar multinucleopolyhedrovirus (LdMNPV), the 
authors tested whether the linear (equation 12.1) or the nonlinear (equation 12.4) model 
explained the data better, using a series of experimental epizootics. However, it should 
be noted that baculoviruses do not represent the only pathogen in the system. 
Entomophaga maimaiga, a fungal pathogen, also infects gypsy moth larva (Hajek, 
1999), but infection rates can be either density‐independent (Liebhold et al., 2013) or 
density‐dependent (Hajek et al., 2015) according to the weather conditions (Hajek and 
van Nouhuys, 2016). LdMNPV, unlike E. maimaiga, is always strongly density‐depend-
ent (Liebhold et al., 2013). Thus, the linear and nonlinear models focused on baculovi-
rus transmission along with host and pathogen densities (Dwyer et  al., 1997) are 
appropriate given the biology of the baculovirus system.

For short‐term epizootic events, the experimental data clearly support the nonlinear 
model for the gypsy moth (see Dwyer et al., 1997, fig. 3). Interestingly, in a comparison 
of lab‐reared larvae with feral larvae, the degree of heterogeneity in transmission was 
much less in the former. Since the lab‐reared larvae were not exposed to virus, the 
authors hypothesized that the level of heterogeneity should be less than for gypsy moth 
larvae reared from eggs collected from the wild. As new models have been developed 
and tested with empirical data, new mechanistic insights into what drives gypsy moth 
baculovirus epizootics continue to be gained. Other models have shown that rapid host 
evolution (Elderd et al., 2008), interactions between plant defensive chemicals and virus 
(Elderd et al., 2013), and heterogeneity in the pathogen (Fleming‐Davies et al., 2015) are 
all important factors driving gypsy moth epizootic dynamics. All of the preceding mod-
els rest upon the mechanistic backbone of equation 12.4, which has continued to move 
the field forward. They also highlight that by combining mechanistic model develop-
ment with experimental data, new insights can be continually gained.

12.4  Fitting Models to Data

To determine whether heterogeneity or other factors can be invoked as drivers of epi-
zootic dynamics, a model must be compared to either experimental or observational 
data. Standard approaches fit the model using the well‐trodden path of frequentist sta-
tistics. These methods determine fit either through the amount of variation explained 
or through the significance of a term in the model (e.g., the slope in a regression), as 
dictated by a null‐hypothesis test and its subsequently generated p‐value. However, the 
use of p‐values continues to fall out of favor, as evidenced by a policy statement from the 
American Statistical Association (ASA) (Wasserstein and Lazar, 2016). This statement 
cautions against overreliance on the p‐value as a valid statistic to indicate whether an 
effect drives the patterns seen in data. Additional problems arise when using this 
approach to compare multiple non‐nested models. Often, when there are multiple 
mechanisms suspected of driving the dynamics in a variety of nonlinear or linear ways, 
non‐nested models quickly accumulate. The question of how best to compare multiple 
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models to the data remained a problem until information theory began to gain a foot-
hold in the wildlife literature (Anderson et al., 2000) and was highlighted in two influ-
ential books (Hilborn and Mangel, 1997; Burnham and Anderson, 2002).

12.4.1 Akaike Information Criterion

An information‐theoretic approach to data analysis became widely used after the 
publication of Burnham and Anderson (2002). This approach allows a researcher to 
compare multiple models (i.e., alternative hypotheses) and determine which best fit the 
data. This is in direct contrast to classical statistics, which focuses on either accepting 
or rejecting a null hypothesis. The rejection of the null hypothesis simply means that the 
null model does not fit the data and is not an acceptance of the alternative model. Thus, 
all of our inference is based on the null model. In comparing multiple models, Burnham 
and Anderson (2002) focused on the use of the AIC, which operates according to the 
principle of parsimony or Occam’s razor. That is, in deciding which is the best model, 
the researcher must shave away all that is unnecessary. Thus, in constructing a mecha-
nistic model, one wants to construct a model with the smallest number of parameters 
that best explains the data. Essentially, there needs to be a balance between underfitting 
(i.e., too few parameters) and overfitting (i.e., too many parameters) models.

Hirotu Akaike, a Japanese statistician, developed a simple formula that corrects for 
constructing models that are too simple or too complex. The formula states:

 AIC Data .= − ( ) +2 2L K|Θ  (12.6)

Here, L Data |Θ( )  is the log likelihood of the data given the model parameters Θ , and 
K  is the number of parameters in the model (Burnham and Anderson, 2002). In a 
standard regression model, the log likelihood of the slope and the intercept is often 
calculated using the sum of squares of the difference or the error between the data and 
the model’s predictions, assuming that the error is normally distributed. To calculate 
the log likelihood for data associated with infections, the error in the model often fol-
lows a binomial distribution, since the data are counts of infected and non‐infected 
individuals (e.g., Elderd and Reilly, 2014). By using the equation 12.6 and, if necessary, 
the associated correction for small sample sizes AICc  (see Burnham and Anderson, 
2002), the raw AIC score can be calculated. The model with the lowest score is the 
best‐fit model. Models with too few parameters are less likely and have a low log likeli-
hood. Models with too many parameters (i.e., larger values of K ), while fitting the data 
better, are penalized by adding to their AIC score. The best model thus represents a 
balance between model fit and complexity.

To fully gauge the degree of support for a model or for one of the alternative hypoth-
eses, the differences between the best‐fit model and the other models  –  the 
∆AIC  – should first be calculated. The formula for calculating the ∆AIC  is:

 ∆AIC AIC AIC ,i i= − ( )min  (12.7)

where i  is the model being considered and min(AIC) is the minimum of all AIC model 
scores. Thus, the best‐fit model, which is the model with the lowest AIC score, has a 
∆AIC  of 0. Models that have ∆AIC > 10  are considered poor fits to the data, those 
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with values between 4 and 7 have little support, and those with values greater than 0 but 
less than 2 have substantial support (Burnham and Anderson, 2002).
∆AIC  scores can, in turn, be used to calculate AIC  weights, which are the weights 

of evidence for the relative likelihood of particular models given the models considered. 
AIC weights are calculated using:

 
wi

i

r
R

r
=

−( )
−( )=

exp .
exp .

0 5
0 51

∆

Σ ∆

AIC
AIC

,  (12.8)

where wi  is the weight of evidence for model i  given all R  models (i.e., better models 
are reflected by higher weights). These weights allow for a direct comparison between 
alternative hypotheses and can be used to gain further insight via multimodel inference 
(Burnham and Anderson, 2002).

12.4.2 An Example of the AIC in Action

To give a concrete example of the use of the AIC in analyzing epizootic data, I will draw 
on a series of experiments examining the effects of global climate change on baculovirus 
transmission in the fall armyworm (Spodoptera frugiperda) (Elderd and Reilly, 2014). 
The fall armyworm is a multivoltine crop pest that overwinters in Florida and Texas 
(Pitre and Hogg, 1983). As springtime temperatures increase, the fall armyworm rein-
vades the entire extent of its range by migrating northward until it reaches Ontario, 
Canada. As adults, female fall armyworms lay eggs in clusters. After the eggs hatch, 
there are six larval instars (Pitre and Hogg, 1983). They then pupate for 7–37 days 
depending upon the temperature (Sparks, 1979), emerge to mate, and continue their 
lifecycle. The species, like many lepidopterans, exhibits boom‐and‐bust dynamics. As 
the population increases during the boom phase, infestations occur, which can be wide-
spread (Fuxa, 1982) and potentially devastating to farmers (Hinds and Dew, 1915).

Spodoptera frugiperda nucleopolyhedrovirus (SfNPV), a species‐specific baculovi-
rus, represents an important mortality source for the fall armyworm (Richter et  al., 
1987). Prior to an epizootic, a viral reservoir in the soil provides the initial inoculation 
of virus (Fuxa and Geaghan, 1983). After 4–6 days, initially infected larvae die (De 
Oliveira, 1999), while uninfected larvae grow to third or fourth instars (Pitre and Hogg, 
1983). The older instars become infected by consuming the contaminated foliage on 
which the first instars died. Over time, virus particles degrade due to UV light exposure 
(Miller, 1997). The epizootic dynamics in the fall armyworm are very similar to those in 
other baculovirus‐driven populations, like the gypsy moth. Thus, we can start with the 
same base model and modify it to answer whatever questions are posed. In this instance, 
how will rising temperatures affect transmission dynamics?

To determine how increasing temperatures affect epizootic dynamics, we established 
a series of control and experimental plots. In the experimental plots, we manipulated 
temperature using open‐top chambers (OTCs) (Marion et  al., 1997), which signifi-
cantly raised temperatures in experimental as compared to control plots (Elderd and 
Reilly, 2014). In each of the 40.1 m2 plots, we placed a single soybean plant (Glycine 
max) of the same variety. Each plant was covered in a mesh bag, and a varying number 
of first‐instar baculovirus‐infected larvae (0, 15, 30, or 60) were placed on top. Once 
the first instars died, we placed 20 healthy fourth instars on the plant and allowed them 
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to feed. After 2 days, we collected the larvae and reared them until pupation or death. 
Baculovirus deaths were confirmed and recorded.

For heuristic purposes, in order to demonstrate the utility of the AIC approach, I will 
only consider a set of simple models (Table 12.1) based on equations 12.2 and 12.5. 
Additionally, although the experiment was conducted three separate times over the 
course of a number of years, I will only analyze the data from a single year. A complete 
analysis of the experiments and data is presented in Elderd and Reilly (2014).

Using the AIC approach for the climate‐change experiment, the best‐supported 
model, given the plausible models considered, is the one where β  is the same for both 
treatments but the treatments have different values of C  (Table 12.1). Note that the 
results are presented in terms of the small sample correction AICc , as recommended 
given the sample size (Burnham and Anderson, 2002). By examining ∆AICc , the sup-
port for the best‐fit model (as compared to the null models) is strong, given that the null 
linear and nonlinear models have ∆AICc  values between 5 and 10. Thus, increasing 
temperature has an effect on disease transmission. This does not hold true for all of the 
models considered. There is also support for the model where only β  differs. The same 
pattern can be seen when examining the AICc  weights (Table 12.1). For all of the data 
associated with these experiments, the general trend holds that C  differs and that as 
temperatures rise, C  exponentially decreases (Elderd and Reilly, 2014). Thus, as the 
climate warms, the nonlinear dynamics of the host–pathogen interaction become more 
and more similar to those of interactions governed by the linear model (Fig. 12.1).

12.5  A Bayesian Approach

Bayesian analysis has become another increasingly popular approach to fitting models 
to data. Like information‐theoretic approaches and classic statistical approaches, 
Bayesian approaches are likelihood‐based. That is, the results of the analysis hinge on 
how likely the data are given the model. However, there is an added component: prior 

Table 12.1 AIC and WAIC results for the single-epizootic model. AICc scores, ΔAICc, AICc weights, 
and WAIC for each model. For the models considered, climate effect is due to OTCs raising 
temperatures in the experimental plots. The nonlinear model (equation 12.5) assumes heterogeneity 
in disease risk. For the linear model (equation 12.2), when C = 0, no difference in risk is assumed. 
β  refers to estimates of mean transmission rate. Best-fit model is in bold.

Model AICc ∆AICc AICc  wt WAIC

1. No climate effect, linear model 57.8 10.2 0.00 108.8
2. No climate effect, nonlinear model 52.7 5.1 0.03 106.4
3. Climate effect, linear model 52.5 4.9 0.04 107.4
4. Climate effect, nonlinear model 50.1 2.5 0.12 106.2
5. Climate effect, differences in C  only 47.6 0.0 0.42 103.3
6. Climate effect, differences in β  only 48.6 1.0 0.25 106.1

Note: AICc  is based on an information theoretic approach to comparing multiple models. WAIC can be 
considered the Bayesian equivalent.
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information about the system. The basis for the approach stems from Bayes’ theorem, 
which states:

 P Θ Θ Θ| |Data Data( ) ∝ ( ) ( )π L  (12.9)

where the posterior probability of the model parameters Θ  given the data is propor-
tional to ( ∝ ), the prior probability of the parameters π Θ( )  times the likelihood of the 
data given the model parameters L Data |Θ( ) . In the past, the implementation of a 
Bayesian approach was often limited due to the complexity of the computations associ-
ated with the analysis. Recently, a proliferation of Bayesian books with ecological per-
spectives (e.g., Clark, 2007; Kéry, 2010; Hobbs and Hooten, 2015) and the availability of 
freeware programs (e.g., WinBugs, JAGS, STAN) have made Bayesian approaches much 
more accessible.

A distinct advantage of Bayesian methods is that they provide a framework for incor-
porating prior information about a system (e.g., preliminary studies), which is especially 
valuable when data are sparse. Typically, prior information enters into the classical 
analysis framework in the discussion when the authors state whether their current find-
ings are similar to or different from those of previous studies (Hille Ris Lambers et al., 
2005). In a Bayesian approach, the prior contains quantitative information and becomes 
a parameter in the analysis ( π Θ( )  in equation 12.9). If no prior information is available, 
vague priors can be used, which contain relatively little information. Explicitly stating a 
prior can be controversial to some, but if individuals are uncomfortable selecting a 
prior, the easiest way to minimize prior influence is to overwhelm it with data (Hobbs 
and Hooten, 2015). However, the use of informed priors makes the most of previously 
hard‐won data and represents a powerful approach to developing mechanistic models 
for understanding epizootic dynamics.

A fundamental difference between a Bayesian approach and more classical approaches 
stems from the difference in how the parameters are treated. Classic frequentist 
approaches assume that a parameter’s value is fixed and that the exact estimate becomes 
better resolved as sample size increases (Hobbs and Hooten, 2015). In contrast, Bayesian 
approaches assume that a parameter is a random variable drawn from a distribution. 
This is the difference between a single value for quantifying disease transmission rates, 
which is estimated with increasing precision, and a distribution of uncertainty reflect-
ing the inherent variability of the transmission rate (Ellison, 2004; Hobbs and Hilborn, 
2006). A more in‐depth examination of Bayesian analysis from a philosophical perspec-
tive, as touched upon earlier, can be found elsewhere in the literature (e.g., Dennis, 
1996; Ellison, 1996, 2004).

12.5.1 Fitting a Bayesian Model

For the linear model (equation 12.1), and assuming there is no difference in the treat-
ment effects, a simple Bayesian model can be constructed such that:

 y p Ni i i∼ ( )binomial , ,  (12.10)

 ln p V Ti( ) = − ( )β 0 ,  (12.11)

 β ∼ ( )lognormal , .0 1000  (12.12)
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The number of survivors or non‐infected larvae is distributed ( ∼ ) binomially with a 
probability pi  given an initial number of healthy larvae Ni . Here, pi  is simply the frac-
tion of uninfected larvae ( S T S( ) ( )/ 0 ). Thus, equation 12.11 is equivalent to equation 
12.1. The disease transmission rate β  has a prior probability that is log normally dis-
tributed with a mean of 0 and a variance of 1000. Thus, the prior is considered vague 
and contains little information. The resulting posterior for each replicate i  becomes:

 

P y y e Ni i
V T

iβ β| | ,( ) ∝ ( )− ( )
Posterior

Likelihood

binomial
��� ��

� �
0

����� �����

� ����� �����
lognormal ,

Prior

β | ,0 1000( )  (12.13)

which, following equation 12.9, explicitly shows the relationship between the posterior 
and its Bayesian components, the likelihood and the prior.

To obtain posterior estimates of the disease transmission rate, one needs to fit the 
models (Table 12.1) to the data using Markov chain Monte Carlo (MCMC) methods. 
This can be done via a freeware package called JAGS (or “Just another Gibbs sampler”) 
(Plummer et al., 2003), which can be run directly in R (Yu‐Sung and Masanao, 2015), or 
else by writing the MCMC code directly in R (R Core Team, 2015). The standard 
approach to constructing the posterior consists of running multiple chains at various 
starting points, trimming their beginnings, and combining them. For each model 
(Table 12.1), five separate chains, each for 50 000 iterations, were run in JAGS, with the 
initial conditions for each chosen randomly. The first 10 000 iterations were discarded 
as “burn‐in” to eliminate any transients associated with the initial conditions. All other 
iterations were retained to serve as estimates of the posterior distribution. The chains 
were not thinned, where thinning entails keeping only every mth iteration of the chain 
and discarding all others, as can be common practice. Link and Eaton (2012) showed 
that thinning is inefficient and reduces the precision of the parameter estimates. Using 
standard metrics, MCMC convergence was assessed by examining both within‐chain 
and between‐chain convergence. If the chains do not converge, the model is doing a 
poor job of estimating the parameters associated with the data. Two common metrics 
involve calculating the Brooks–Gelman–Rubin and the Heidelberger–Welch diagnos-
tics. The Brooks–Gelman–Rubin statistic compares within‐ and between‐chain varia-
tion (Brooks and Gelman, 1998), with values less than 1.1 indicating good between‐chain 
convergence (Gelman and Hill, 2006). The Heidelberger–Welch diagnostic tests for 
stationarity (Heidelberger and Welch, 1983). Specifically, it tests whether or not a sam-
ple chain’s mean changes over the entire MCMC sample. If the mean does not change, 
the chain is stationary. It is always a good idea to visually inspect the chains in addition 
to making sure that they have converged (i.e., that the draws from the various chains 
overlap and that the chains are stationary). When the chains converge, all are combined 
to produce the posterior distribution.

To assess overall model fit to the data, Gelman and Hill (2006) recommend carrying 
out posterior predictive checks. Posterior predictive checks use a standard discrepancy 
statistic, such as the sum of squared deviations of observed values from predictions, to 
examine how well the fitted model can generate new data. The simulated new data 
based on MCMC draws and the actual data are compared by measuring the lack of fit 
to model predictions. Large differences in fit between the two data sets indicate that the 
model misfits the actual data and should be modified. Lack of fit can be examined 
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visually or can be used to compute a Bayesian p‐value ( pB ), which quantifies the fre-
quency with which the discrepancy for the simulated data is greater than the discrep-
ancy for the actual data. Values between 0.15 and 0.85 indicate that the model fits the 
data well (Hobbs and Hooten, 2015).

Like AIC, there are equivalent Bayesian methods for comparing multiple non‐nested 
models. The approach used will depend on the data collected and the analysis to be 
conducted (Hooten and Hobbs, 2015). For the epizootic field experiments previously 
described, the Watanabe–Akaike information criterion (WAIC) is perfectly suitable. 
The WAIC is similar to the AIC in that there are two components of the formula to 
parsimoniously balance model fit and model complexity. The WAIC takes a similar 
form to the AIC and is calculated by computing:

 WAIC lppd ,= − +2 2 pw
 (12.14)

where lppd is the log posterior predictive density and pw  is the associated parameter 
penalty (Gelman et al., 2014) for overfitting the model. The posterior predictive density 
is based on how well the posterior estimates of the model (e.g., transmission rate) pre-
dict new data. Since there are no new data, we simply ask how well each estimate of the 
transmission rate from the posterior MCMC sample does in predicting the data at 
hand. The second term, which determines the effective number of parameters in the 
Bayesian model, is the sum of the variance associated with the log posterior predictive 
density (Hobbs and Hooten, 2015). Formally, the WAIC can be written as:
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where n  is the number of observations, J  is the number of samples of the posterior, yi  
represents each data point, and Θ j  are the parameter estimates from a single sample j  
of the posterior (Hobbs and Hooten, 2015). The WAIC represents just one metric that 
can be used to validate Bayesian models. While this formula can appear daunting, 
numerous resources exist that can help one in either understanding or calculating the 
WAIC (e.g., Gelman et al., 2014; Hobbs and Hooten, 2015; Hooten and Hobbs, 2015). 
Another popular method is cross‐validation, whereby some data are used to fit the 
model and others are left out to test how well the model does in fitting them. In fact, the 
penalty term for the WAIC can be considered an approximation to cross‐validation 
(Gelman et al., 2014). The most appropriate metric will depend upon the model being 
fit, the data, and the manner in which the data have been collected (Hooten and 
Hobbs, 2015).

12.5.2 An Example of the WAIC in Action

The same experiment and data from the AIC example can also be analyzed from a 
Bayesian perspective, and the associated WAIC scores calculated. For the models con-
sidered, the rankings are similar to the AIC results (Table 12.1). The model with the 
lowest WAIC scores is still the model where C  differs but the transmission rate β  stays 



457

Modeling Insect Epizootics

the same across treatments. Note, for the WAIC, that there are no equivalent metrics 
associated with model comparisons, such as weights used in the AIC (see earlier). 
However, the use of the WAIC continues to be developed and refined. When applied to 
fall armyworm virus data, the model results show that the coefficient of variation C  
increases as temperatures increases, which results in an increase in overall transmission 
at higher cadaver densities (Fig. 12.2). Using the WAIC, the same conclusion can be 
drawn: that when temperatures rise the coefficient of variation associated with transmis-
sion declines and the dynamics become more and more similar to linear transmission 
dynamics (Elderd and Reilly, 2014). At the end of the day, both the AIC and the WAIC 
result in the same best model. The advantage of using a Bayesian framework becomes 
more readily apparent as the models considered become increasingly complicated.

12.6  Long-Term Dynamics

The focus, so far, has been on single occurrences of a high prevalence of disease in a 
population (i.e., a single epizootic). Considerable research also focuses on modeling the 
long‐term dynamics of insect populations driven by semiregular epizootic events. As 
this research has shown via the use of mechanistic models, epizootics drive or help 
drive the boom‐and‐bust population cycles often associated with insects, particularly 
those of economic concern.

As previously mentioned, Anderson and May’s (1980) seminal paper combined ideas 
from two often disparate fields of research: predator–prey dynamics and epidemiology. 
Most previous efforts in modeling disease outbreaks focused on single epizootic events. 
These models are best exemplified in the epidemiological literature as the SIR models 
(Kermack and McKendrick, 1927), in which a main assumption is that the overall popu-
lation size does not change over the course of an epidemic or epizootic (Anderson and 
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Fig. 12.2 Best-fit model (Table 12.1) for (a) control and (b) warmed plots. The solid dark line represents 
the predicted fraction infected (equation 12.5) given the median Bayesian estimates of β  and C  for 
each treatment. The lighter shaded lines correspond to the 90% credible intervals (CIs) associated with 
these estimates. The points represent the mean of the data. The bars are the standard errors.
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May, 1979). This approach works well with questions focused on near‐term conse-
quences, such as, “How many individuals will become infected over the course of an 
epizootic?” On the other hand, predator–prey models focus on the long‐term popula-
tion dynamics of prey and their predators, which are based on the classic work of Lotka 
(1932) and Volterra (1926). Anderson and May used ideas from both fields to construct 
a model showing that larch bud moth (Zeiraphera diniana) outbreaks could be driven by 
host–pathogen interactions (Anderson and May, 1980). Surprisingly, prior to their work, 
ecologists generally ignored the ability of pathogens to control the population dynamics 
of an insect (Anderson and May, 1981). Interestingly, more recent work on the same 
larch bud moth system has shown that parasitoids, not pathogens, drive the boom‐and‐
bust cycles (Kendall et al., 1999; Turchin, 2003). When expanding the model to include 
spatial dynamics, dispersal, along with plant quality, can play an important role (Bjørnstad 
et al., 2002). The change in the driver of the cycle from the pathogen to the parasitoid 
exemplifies the importance of continually confronting observational data with mecha-
nistic models and modifying a model as new data and new hypotheses emerge.

12.6.1 Long-Term Dynamics: Confronting Models with Data

For the univoltine gypsy moth, the short‐term dynamics associated with epizootics dur-
ing the larval phase and the long‐term dynamics associated with adult reproduction can 
be considered separately. First, the epizootic occurs (a within‐generation process), and 
then reproduction occurs (a between‐generation process). A number of mechanistic 
models have been developed to describe this within‐ and between‐generation process 
(e.g., Dwyer et al., 2004; Bjørnstad et al., 2010; Elderd et al., 2013). The general gestalt of 
these models is summarized nicely by Fuller et al. (2012).

To start off, consider the short‐term or within‐generation dynamics, which are gov-
erned by a series of differential equations that track the entirety of the epizootic process. 
The equations are:
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m E Vm= −δ µ .  (12.18)

Here, the equivalent terms have the same meanings as before (see equation 12.4). A 
major change from the classic SIR model is reflected in the fact that there is now an 
exposed class E , within which there are a number of different stages Ei . The individu-
als in each i  th stage, Ei , have consumed enough virus to become infected but have not 
yet succumbed to the virus and become pathogen, V . If there is only a single infected 
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class in the model, some larvae will instantly become pathogen, as exposed individuals 
continually move at an exponential rate out of the single exposed class (Keeling and 
Rohani, 2008). By allowing for m  total stages, the infected stages becomes a sum of 
exponential distributions, which is a gamma distribution with a mean of 1/δ , where δ  
is the average speed of kill, and a variance of 1/ mδ . The number of stages depends 
upon both the mean and the variance estimates of the speed of kill. For gypsy moth 
larvae, the best estimates are 1/δ  = 12 days and m  = 20 (Fuller et al., 2012). To reiter-
ate, equations 12.15–12.18 only describe the within‐season dynamics of the insect host 
when it is susceptible and succumbs to the baculovirus.

Long‐term or between‐season dynamics of the host population track host reproduc-
tion after the epizootic ends. Recall, the epizootic ends either due to the uninfected 
individuals pupating or due to epizootic burnout (Dwyer et al., 2000; Fuller et al., 2012). 
At the end of the epizootic, the equations describing the long‐term dynamics are:

 
N N I N Z abN
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1 2 21 1λ , ,  (12.19)

 Z fN I N Z Zn n n n n+ = ( ) +1 , .γ  (12.20)

Here, Nn  and Zn  are the densities of the hosts and the cadavers before the epizootic in 
generation n  and I N Zn n, ( )  is the fraction of the larvae that become infected (equa-
tions 12.15–12.18). The net reproductive rate is λ . For outbreaking insects, population 
densities are kept at low levels during inter‐outbreak periods by generalist predators or 
parasitoids (Dwyer et al., 2004). For gypsy moth populations, this can take the form of a 
Type III functional response. The fraction surviving predation is represented by the 
term 1 2 2− +( )abN b Nn n/ , where a  is the maximum predation rate and b  is the 
saturation constant. Baculovirus densities depend upon the survival f  of virus derived 
from the current generation and the survival of virus γ  from previous generations. 
While it is likely that sublethal or covert infections play only a small role in the long‐
term dynamics, the preceding model also adequately describes covert infections. It 
assumes that some fraction of the virus survives from one generation to the next, which 
could be derived from covert infections. As long as this fraction is density‐independent, 
the model provides an accurate accounting of covert infections (Elderd et  al., 2013). 
Over the course of multiple generations, the modeling consists in stringing together the 
short‐term (e.g., one season for univoltine gypsy moths) epizootic followed by adult 
reproduction, which sets the stage for the next epizootic.

12.6.2 Time-Series Diagnostics

While fitting models to data using results from short‐term experiments draws directly 
from the standard statistical literature, long‐term data sets represent a different prob-
lem from an analytical perspective. They are often observational and constitute a classic 
example of an “inverse problem” (Kendall et al., 1999), such that the data collected may 
arise due to many different mechanistic processes (e.g., intraspecific density‐dependent 
regulation vs. host–pathogen interactions). How best to decide which mechanisms may 
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be responsible for the observed data is central to understanding what drives the boom‐
and‐bust cycles associated with long‐term epizootic dynamics.

For many of these observational data sets, the data are not directly fitted to the model. 
For instance, a number of papers exploring gypsy moth long‐term dynamics use defolia-
tion data as a proxy for gypsy moth population numbers (e.g., Dwyer et al., 2004; Elderd 
et al., 2008; Bjørnstad et al., 2010). To compare the model output with the observational 
data, authors often rely on matching various metrics associated with the time series of 
the data (e.g., average period between peak outbreaks or defoliation events) with the 
model output. Directly fitting the model to the data becomes increasingly problematic 
if the dynamics of the system are chaotic, since the model and the data are sensitive to 
initial conditions (Dwyer et al., 2004). Thus, instead of directly fitting the data to deter-
mine which model drives the observed dynamics, “time‐series” probes are advocated 
(Kendall et al., 1999; Turchin, 2003).

Kendall et al. (1999) were among the first advocates in the ecological literature to 
push for the use of “time‐series” probes by combining time‐series statistics with mech-
anistic population models. Previous to this paper, most time‐series analyses consisted 
of fitting nonmechanistic models that could be considered biologically naïve to obser-
vational data. On the other side of the coin were the theoretical population ecologists 
who constructed biologically explicit models that elicited general patterns seen in the 
data but often did not use standard goodness–of‐fit metrics to see if their models stood 
up to the data (Kendall et al., 1999). The use of “time‐series” probes blends the two 
historic approaches by combining biologically reasonable models with time‐series 
analytical approaches.

There are three steps to this approach. The first consists in constructing the mathe-
matical model describing the long‐term dynamics (e.g., equations 12.19–12.20). In the 
second, once the model is constructed, it is parameterized using independent data and/
or other time‐series data. In the third step, the model predictions are compared to the 
time series using a suite of statistical probes, such as average period, amplitude, auto-
correlation, and spectral density functions. This is done by simulating the model to 
generate a suite of synthetic time series and comparing the simulated dynamics to the 
actual time series. In the end, if the model fits the data using the time‐series probes, the 
hypothesis driving the mechanistic models is worth pursuing. While Kendall et  al. 
(1999) used data from Nicholson’s classic blowfly populations to demonstrate the utility 
of this approach, the usefullness of time‐series probes in understanding long‐term epi-
zootic dynamics has been demonstrated time and time again (e.g., Dwyer et al., 2004; 
Johnson et al., 2006; Abbott and Dwyer, 2008; Elderd et al., 2008; Bjørnstad et al., 2010).

While others have directly compared model output to data using classical goodness‐
of‐fit measures for non‐epizootically driven time series (Ives et  al., 2008), the time‐
series probe approach remains popular. However, methods described by Ives et  al. 
(2008) hold promise from both a standard‐likelihood perspective and from a more 
Bayesian one (Barraquand et al., 2017) for examining cyclic dynamics. Thus, likelihood‐ 
and Bayesian‐based approaches may also hold promise in the realm of modeling epizo-
otic dynamics.

To understand how and whether a method works, as outlined in Ives et  al. (2008), 
simulating data represents a useful first step. Exploratory analyses consist simply in using 
a model (e.g., equations 12.19–12.20) to create fake data by adding process or measure-
ment error to the model’s deterministic skeleton. The simulated data are analyzed using 
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a method of choice (e.g., a Bayesian approach), and the results are compared to the 
known simulated truth (Kéry, 2010).

To examine the methods used in Ives et al. (2008) from a Bayesian perspective, data 
were simulated using the nondimensionalized version of the burnout approximation 
model in Dwyer et  al. (2000). The simulation used three equations to represent the 
dynamics, as follows:

 N N I N Zn n n n n+ = − ( ) 1 1λε , ,  (12.21)

 Z N I N Z Zn n n n n+ = ( ) +1 φ γ, ,  (12.22)
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Here, φ  is the product of pathogen survival and mean susceptibility of newly emerging 
larvae (Dwyer et al., 2000) and εn  is a log normally distributed random variable with a 
median of 1 and a standard deviation of σ . For simplicity of presentation, γ  is set to 0 and 
there are no generalist predators in the model. To understand the boom‐and‐bust dynam-
ics of the insect host population given the preceding, there are only three parameters in 
the nondimensionalized model that matter: λ , C , and φ . All of the other parameters 
simply move the population mean up or down, and do not affect the period or amplitude 
of the population cycles. In terms of the simulated data, the analysis only uses the time 
series associated with the host population, N , as an input. Overall, the Bayesian approach 
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Fig. 12.3 Bayesian estimates of a simulated time series using equations 12.15–12.18, assuming 
epizootic burnout (Dwyer et al. 2000) without generalist predators. In the top panel, the simulated 
data are represented by the solid line and the best estimate of the dynamics by the dashed line. The 
bottom three panels show the associated histograms for each of the parameters estimated from the 
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does a reasonable job of predicting the dynamics and the model’s associated true param-
eter values (Fig. 12.3). The next step is to confront the same modeling framework with data.

12.7  Modifying and Applying the Model

It is important to remember that models, like hypotheses, are not static. The develop-
ment of epizootic models, whether regarding single epizootic events or the long‐term 
dynamics of the host population, have continued and will continue to evolve as more 
data are collected and new hypotheses emerge. For the gypsy moth, the development of 
changes in the basic long‐term model still continues. While earlier models focused on 
host–pathogen dynamics alone (Dwyer et al., 1997, 2000), later models included the 
importance of generalist predators (equations 12.19–12.20) (Dwyer et  al., 2004), the 
effect of host–density on disease resistance (Reilly and Hajek, 2008), host evolutionary 
dynamics (Elderd et al., 2008), and host food resources (Bjørnstad et al., 2010; Elderd 
et al., 2013). The models that incorporated changes in host food source or food quality 
also incorporated spatial components to characterize outbreak dynamics in different 
forest types.

While the preceding highlights model development with regard to gypsy moth popu-
lations, model development and modification are also important to understanding 
epizootic dynamics in other insect species (e.g., Hochberg, 1989; Boots and Mealor, 
2007; Elderd and Reilly, 2014).

Epizootic models can also be used to examine applied problems, which can be stud-
ied by modeling epizootic dynamics before enacting management strategies or poli-
cies. As a number of insect species are pests, pathogens and parasites represent 
potential biocontrol agents. While the easiest way to deal with a short‐term infestation 
may be to release pathogens into the environment, the long‐term effects often remain 
unknown. The main reasons for this stem from the need for long‐term observational 
data collected over multiple epizootic periods (often decades) and the lack of data col-
lected during a series of long‐term experimental trials (i.e., controls and experimental 
plots). A prime example of such a successful combination of experimental trials and 
model development in a non‐insect system is found in Hudson et  al. (1998), who 
focused on controlling population declines in the red grouse (Lagopus lagopus scoti-
cus) caused by a parasitic nematode. The field component of this research took almost 
a decade at multiple sites, which might not be possible in the midst of an insect infesta-
tion. However, the use of mechanistic models of insect epizootic dynamics for applied 
problems within the confines of one’s computer allows the researcher to conduct 
experiments via simulation. This approach has led to insights into the effectiveness of 
pathogens as biocontrol agents for a number of insect taxa (Hochberg, 1989; Hochberg 
and Waage, 1991; Reilly and Elderd, 2014). Reilly and Elderd (2014), in their model of 
the gypsy moth–baculovirus system, showed that spraying focused only on the short‐
term effects of controlling an insect population may lead to unexpected and undesira-
ble consequences. For certain spraying regimes, the gypsy moth population can be 
maintained at constant population levels instead of exhibiting boom‐and‐bust cyclic 
dynamics, but the average population size is relatively high. This, in turn, may result in 
constant defoliation of the forests that these biocontrol efforts are trying to protect. 
Overall, while the mechanistic models provide a deeper understanding of what drives 
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epizootics in insect populations, they also provide a useful tool for asking questions of 
an applied nature.

12.8  Conclusion

The use of models to understand epizootic dynamics has a long history in the ecological 
literature. Much of the past debate concerning which methodology is best suited for 
moving the field forward centered on the historic false dichotomy between empirical 
and theoretical approaches, while sometimes invoking simulation‐based methods. 
However, the ability to confront models with data has led to new and exciting develop-
ments in the field, since models can now be used as hypotheses to drive research ques-
tions. While using the preceding techniques and ideas may seem easy to some and 
daunting to others, they do not necessarily need to be mastered by all. Instead, they 
represent a framework to begin a conversation about questions that can be answered, 
how to design empirical studies, and how best to use the data produced. The reason the 
false dichotomy of empiricism and theory continues to blur stems from more individu-
als being able to speak in multiple languages. Thus, mastering each technique is not 
essential, but being able to communicate across the false divide is. As the dialogue 
advances and individuals speak across their own expertise, the biology of the system 
becomes better connected to the mechanistic framework, which leads to a better 
understanding of what drives the epizootic process.
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