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Summary

1. While rising global temperatures are increasingly affecting both species and their biotic

interactions, the debate about whether global warming will increase or decrease disease trans-

mission between individuals remains far from resolved. This may stem from the lack of

empirical data.

2. Using a tractable and easily manipulated insect host–pathogen system, we conducted a ser-

ies of field and laboratory experiments to examine how increased temperatures affect disease

transmission using the crop-defoliating pest, the fall armyworm (Spodoptera frugiperda) and

its species-specific baculovirus, which causes a fatal infection.

3. To examine the effects of temperature on disease transmission in the field, we manipulated

baculovirus density and temperature. As infection occurs when a host consumes leaf tissue on

which the pathogen resides, baculovirus density was controlled by placing varying numbers of

infected neonate larvae on experimental plants. Temperature was manipulated by using open-

top chambers (OTCs). The laboratory experiments examined how increased temperatures

affect fall armyworm feeding and development rates, which provide insight into how host

feeding behaviour and physiology may affect transmission.

4. Disease transmission and outbreak intensity, measured as the cumulative fraction infected

during an epizootic, increased at higher temperatures. However, there was no appreciable

change in the mean transmission rate of the disease, which is often the focus of empirical and

theoretical research. Instead, the coefficient of variation (CV) associated with the transmission

rate shrunk. As the CV decreased, heterogeneity in disease risk across individuals declined,

which resulted in an increase in outbreak intensity.

5. In the laboratory, increased temperatures increased feeding rates and decreased develop-

mental times. As the host consumes the virus along with the leaf tissue on which it resides,

increased feeding rate is likely to increase the probability of an individual consuming virus-

infected leaf tissue. On the other hand, decreased developmental time increases the sloughing

of midgut cells, which is predicted to hinder viral infection.

6. Increases in outbreak intensity or epizootic severity, as the climate warms, may lead to

changes in the long-term dynamics of pests whose populations are strongly affected by host–
pathogen interactions. Overall, this work demonstrates that the usual assumptions governing

these effects, via changes in the mean transmission rate alone, may not be correct.
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Introduction

As global temperatures continue to rise, the ecological

impacts of climate change are becoming more apparent

(Adler & HilleRisLambers 2008; Doak & Morris 2010;

Milazzo et al. 2013). Initially, research efforts focused on

how climate change will affect species in isolation and, in

particular, how the range of a particular species will

respond to a warmer world (Parmesan et al. 1999). More

recent efforts recognized the importance of species inter-

actions, which may represent potential biotic multipliers

of climate change (Zarnetske, Skelly & Urban 2012). This*Correspondence author. E-mail: elderd@lsu.edu
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led to both theoretical and empirical research on multiple

topics such as plant–herbivore (Vasseur & McCann 2005;

O’Connor 2009; O’Connor, Gilbert & Brown 2011),

predator–prey (Harmon, Moran & Ives 2009) and multi-

species interactions (Suttle, Thomsen & Power 2007;

Barton, Beckerman & Schmitz 2009; Urban, Tewksbury

& Sheldon 2012; Hansen et al. 2013). While there have

also been theoretical and empirically based models exam-

ining the effects of global warming on disease transmis-

sion (Dobson 2009; Molnar et al. 2013; Mordecai et al.

2013; Thompson, Levin & Rodriguez-Iturbe 2013) as well

as laboratory experiments (Paull, LaFonte & Johnson

2012; Ben-Horin, Lenihan & Lafferty 2013), few studies

have addressed this question using field experiments (but

see Roy, Gusewell & Harte 2004). Thus, the effects of cli-

mate change on disease transmission dynamics represent

an area of research that has raised a number of questions

that remain unanswered about the timing and intensity of

epidemics or epizootics in a warmer world (Rohr et al.

2011; Altizer et al. 2013). This may be due, in a large

part, to a lack of empirical data (Pascual & Bouma 2009).

In general, there has been considerable debate in the

disease literature on whether global warming and its asso-

ciated stressors will result in an increase or decrease in

disease outbreak frequency and intensity (Lafferty & Holt

2003; Wilson 2009; Rohr et al. 2011). The focus of the

debate appears to hinge on how increased temperatures

will affect disease transmission rates between individuals.

An underlying simplifying assumption of models used in

this debate is that disease transmission rates do not vary

greatly between individuals in a population (Moore et al.

2012; Molnar et al. 2013). Thus, all individuals have the

same transmission rate, which results in transmission

depending linearly on host and pathogen densities. We

realize that this simplifying assumption is not solely rele-

gated to the debate on climate change and disease trans-

mission. In fact, this assumption is used throughout the

pathogen and parasite literature (Anderson & May 1980;

Hudson, Dobson & Newborn 1998; Grenfell, Bjornstad &

Kappey 2001; Elderd, Dukic & Dwyer 2013) and can be

fully justified as these linear transmission models fit the

observed data. Yet, individuals vary in their risk of con-

tracting a disease (Anderson & May 1991; Dwyer, Fire-

stone & Stevens 2005). The degree of variability or

heterogeneity in the population can have important conse-

quences for determining the number of individuals

infected and, thus, intensity of an outbreak both over the

short and long term (May & Anderson 1988; Dwyer,

Elkinton & Buonaccorsi 1997; Dwyer et al. 2000;

Ben-Ami, Ebert & Regoes 2010; Tompkins et al. 2011).

For many insect host–pathogen or host–parasitoid

interactions, as well as other systems, variability in indi-

vidual infection or parasitism risk can play an important

role in disease transmission or parasitism rates (Anderson

& May 1980; May & Anderson 1988; Reeve, Cronin &

Strong 1994; Briggs & Godfray 1996; Cronin & Strong

1999). Hassell et al. (1991) show that in a host–parasitoid

system that heterogeneity in the parasitoid attack rate sta-

bilizes the system. In theoretical systems where individual

hosts are considered homogeneous such as in the classic

Nicholson-Bailey model (Nicholson & Bailey 1935), the

host–parasitoid system as a whole goes extinct. For host–

pathogen systems, allowing for heterogeneity in the dis-

ease transmission rate best explains epizootic data for the

invasive gypsy moth, Lymantria dispar (Dwyer, Elkinton

& Buonaccorsi 1997; Elderd, Dushoff & Dwyer 2008;

Elderd et al. 2013). Essentially, the addition of heteroge-

neity to transmission models results in a nonlinear rela-

tionship between pathogen or virus density and

transmission. While we assume that heterogeneity drives

this nonlinear relationship, other mechanisms can also

result in nonlinear transmission (Hochberg 1991;

McCallum, Barlow & Hone 2001; Fenton et al. 2002).

Traditional models that do not include heterogeneity

assume a linear relationship (Fig. 1). Thus, heterogeneity

in transmission rates and how heterogeneity changes in a

warmer world may have important consequences for

epizootic outbreaks.

While heterogeneity in disease transmission regulates

the short-term dynamics of an epizootic, it is also impor-

tant for determining the system’s long-term dynamics.

The long-term dynamics of these host–pathogen interac-

tions commonly exhibit boom and bust cycles, in which

the host population crashes from peak levels due to dis-

ease outbreaks (Cory, Hails & Sait 1997; Liebhold et al.

2000). Insect species exhibiting long-term cycles are often

of ecological and economic interest because the boom

portion of the cycle leads to widespread forest and crop

damage (Dwyer, Dushoff & Yee 2004). In fact, the ability

of pathogens to decrease pest population size has led to

the development and use of a number of pathogen-based

biocontrol agents (Hochberg 1989; Podgwaite et al. 1992;

Moscardi 1999; Moreau et al. 2005; Moreau & Lucarotti

Fig. 1. Effect of increasing the transmission rate’s coefficient of

variation (CV) or K in eqn 2 on transmission. The solid lines rep-

resent populations in which risk varies across individuals. The

dashed line represents a population in which all individuals are

equally at risk (eqn 1). Each line uses the same value for the

transmission rate of the virus.
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2007; Gomez-Bonilla et al. 2013). Thus, any change in

disease transmission and epizootic intensity due to climate

change may have important consequences from both an

ecological and economic perspective.

For many lepidopteran and other insect species, bacul-

oviruses, which include nucleopolyhedroviruses (NPVs),

comprise the pathogen source responsible for a number of

large-scale epizootics (Miller 1997). Baculovirus-driven

epizootics begin when a larva consumes foliage contami-

nated with baculovirus occlusion bodies (OBs) (Cory &

Myers 2003). The OBs contain multiple virions sur-

rounded by a protein coat, which dissolves in the host

midgut. If enough OBs are consumed, a fatal infection

occurs. Prior to death, the virus replicates within the non-

moulting larva until the baculovirus triggers the dissolu-

tion of the larval integument (Miller 1997). The OBs are

released and contaminate the foliage on which the host is

feeding. Additional larvae eat the contaminated foliage,

and the infection cycle continues (Cory & Myers 2003).

Over time, ultraviolet light exposure causes virus particles

to degrade (Miller 1997). To investigate the effect of glo-

bal warming on disease transmission, we conducted a ser-

ies of field and laboratory experiments where the fall

armyworm, Spodoptera frugiperda, serves as the host and

its species-specific fatal baculovirus, Spodoptera fru-

giperda nucleopolyhedrovirus (SfNPV), serves as the

pathogen.

Materials and methods

the system

The multivoltine fall armyworm is polyphagous and overwinters

in Florida and Texas (Pitre & Hogg 1983). The pupae cannot

survive freezing temperatures. During the spring, the fall army-

worm reinvades the northern areas of its range as it migrates

northward. The life cycle begins with adult females laying eggs in

clusters. After the eggs hatch, there are six larval instars that col-

lectively last 14–30 days depending upon temperature (Pitre &

Hogg 1983). Fall armyworms then pupate for 7–37 days also

depending upon temperature (Sparks 1979), emerge to mate and

continue their life cycle. The species, like many lepidopterans,

exhibits boom and bust dynamics, which have been recorded as

early as 1845 (Hinds & Dew 1915). As the population increases

in size during the boom phase, fall armyworm infestations occur,

which can be large and widespread (Fuxa 1982).

For the fall armyworm, SfNPV represents an important mor-

tality source (Richter, Fuxa & Abdelfattah 1987). Prior to an epi-

zootic, a viral reservoir in the soil provides the initial inoculation

of baculovirus into the system (Fuxa & Geaghan 1983). After

4–6 days, initially infected first-instar larvae die (De Oliveira 1999),

while uninfected larvae grow to third or fourth instars (Pitre &

Hogg 1983). The older instars become infected by consuming the

contaminated foliage on which the first instars have died.

In baculovirus systems, virus transmission is primarily depen-

dent upon the host consuming leaf tissue on which the virus

resides (Miller 1997). For our experiments, we used soybean

(Glycine max), a common food source for the fall armyworm

(Richter, Fuxa & Abdelfattah 1987). Soybean plants self-pollinate

and produce genetically similar offspring. Therefore, using a sin-

gle soybean genotype (Gasoy 17) allowed us to examine disease

transmission without being concerned about differences in plant

quality.

the field experiments

To quantify the effects of warming temperatures on a single

round of disease transmission, we manipulated temperature and

virus-killed cadaver density within individual plots. The 40 1-m2

plots, which were separated from each other by at least two

metres, were each randomly assigned a temperature and virus

(i.e. number of virus-killed cadavers) treatment. The experiment

was conducted three times, once during 2010 and twice during

2011, at LSU’s Burden Research Center, Baton Rouge, LA

(30°24′N, 91°06′W). The Burden Research Center is affiliated

with the LSU AgCenter and contains 440 acres of mixed forest

and fields. The experimental plots were set up in a mowed field

with natural grass cover.

To increase temperatures in the 20 warmed plots, we placed an

open-top chamber (OTC) over the entire plot (See Fig. S1, Sup-

porting information). The chambers were made with plexiglass

plates (Solar Components Corporation, Manchester, NH, USA)

that slant inward to focus solar energy within the plot (Marion

et al. 1997). A single OTC consisted of four trapezoidal plates

held together by metal brackets at each corner. Given our OTC

design, a cage control would consist of the metal brackets used

to attach the plexiglass plates together. Given the relatively small

size of the brackets, we felt a cage control was unnecessary.

In a subset of the plots, we placed iButtons (Maxim Integrated,

San Jose, CA, USA). The iButtons were placed in a small mesh

bag made of the same material enclosing the individual plants

used in the experiment (see below). The bag containing the iBut-

ton was then placed at the base of the plant just below the point

on the stem where the mesh bag enclosing the plant ended and

near the top of the plot’s vegetation (See Fig. S1, Supporting

information). The placement of the iButtons, along with being

enclosed in a mesh bag of its own, minimized the chance that the

individual iButtons were exposed to direct sunlight, which can

cause unrealistic spikes in temperatures. The buttons measured

temperature, and a subset measured humidity at 15-min intervals

during the experiment. The iButton data allowed us to determine

the extent to which the OTCs raised temperature and humidity in

experimental warming plots as compared to control plots.

The experiments were designed to measure disease transmission

and replicate, as closely as possible, natural virus transmission. In

each plot, we placed a 4-week-old soybean plant, which had been

grown at 28 °C in a laboratory growth chamber. Each plant had

approximately five to six trifoliate leaves. Any extra leaves were

trimmed to ensure that all plants had approximately the same gen-

eral leaf area. For most plants used in our experiments, no leaves

were removed while other plants had, at most, two leaves removed.

In our experiments, we followed Underwood et al. (2000) and

assumed that limited mechanical damage will not induce a soybean

plant to produce chemical defences. Additionally, to err on the side

of caution, we chose a soybean variety, Gasoy 17, that Under-

wood, Rausher & Cook (2002) classified as having no induced

defences. Thus, even if the plants were induced due to any mechan-

ical damage, their inductive response would be limited.

To manipulate the amount of virus, we varied cadaver density

on each plant. Either 0, 15, 30 or 60 infected first-instar larvae
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(i.e. future cadavers) were placed on each plant. The infected lar-

vae treatments were assigned in equal proportions across control

and warmed plots. By using infected first-instars rather than

spraying a set amount of virus on the plant, the virus would be

spread about the leaf tissue in a manner close to that seen in

natural environments.

To infect larvae, we allowed recently hatched larvae to feed on

artificial diet that had been inoculated with SfNPV derived from

field-collected fall armyworms. The infected fall armyworms were

collected from corn fields in Southeastern Louisiana near Ham-

mond by Jim Fuxa and Art Richter (A. Richter, pers. comm.).

We processed the field-collected virus by feeding fifth-instar lar-

vae a cube of diet inoculated with a homogenized mixture of the

tissue from a single armyworm. After the infected individuals

died, but before they lysed, we extracted the virus from each indi-

vidual by grinding the cadaver in a 1�5-mL eppendorf tube with

750 lL of deionized water. We centrifuged the cadaver mixture

for 5 min at 1 G to remove the supernatant, which contains the

OBs. We resuspended the course debris by adding another

750 lL of deionized water, recentrifuged the mixture and

extracted the supernatant. The supernatant was then spun at

20 000 G for 10 min to pellet out the OBs. We discarded the

supernatant and resuspended the OBs. A single cadaver can pro-

duce upwards of 2 9 109 OBs ml�1 (Valicente et al. 2013).

To inoculate the diet, we placed 9 lL of 106 OBs per 3 lL solu-

tion on the surface of two ounce diet cups. Once the solution had

dried, we placed recently hatched neonates or first-instar larvae on

the diet. Given the large number of OBs from a single larva, we

used OBs derived from one larva for the October 2010 experiment

and an additional larva for the July and September 2011 experi-

ment. The virus from each larva used was derived from a single

collected fall armyworm. Ideally, we could have used and ampli-

fied plaque-purified virus to control for differences in the patho-

gen across the experiments. However, none was available to us.

The first-instar larvae were, then, allowed to feed for 2 days on

the virus-infected diet. After 2 days, they were checked for infec-

tion. Infected neonates can be readily distinguished from

non-infected individuals as infected neonates appear bloated and

non-infected neonates by that time have moulted to the next

instar. Once infected larvae were placed on a plant, the plant was

enclosed in a mesh bag (Econet, Hummert, Springfield, MO,

USA).

After a sufficient period of time had elapsed to ensure infected

larval death (2–4 days), 20 healthy laboratory-reared and recently

moulted fourth instars were placed in the bag and allowed to

feed. After feeding, the larvae were recaptured and reared in

individual cups of artificial diet until death or pupation. The

same experimental methodology has been used to gain insight

into gypsy moth transmission dynamics (Dwyer, Elkinton &

Buonaccorsi 1997; Elderd et al. 2013).

In 2010, the fourth instars were allowed to feed for 4 days.

For the other two experimental trials in 2011, the larvae fed for

2 days. Although no plants were completely defoliated in 2010,

which could affect the analysis, we decided to decrease the num-

ber of days spent feeding to guard against complete defoliation

given the potential for warmer temperatures in July and Septem-

ber of 2011 as compared to October 2010. In the analysis, we

account for differences in the experimental times. After bringing

the larvae back to the laboratory, we recorded the number of

infected and healthy larvae recovered from each plot. Infection

was confirmed by either liquefaction of the host by the virus or

under a light microscope where OBs were clearly visible (Cory &

Myers 2003). Controls without virus-infected larvae were used to

quantify background infection rates. All larvae used in the experi-

ment were from a colony maintained by Bio-Serv (Frenchtown,

NJ, USA) or by Dr. Mike Stout at LSU. As the larvae were

brought back into the laboratory before they lysed, the above

experiment measured a single round of disease transmission.

mechanistic model of disease transmission
for the field experiments

Disease ecologists have long relied on mathematical models to

understand and describe disease transmission (Kermack &

McKendrick 1927; Anderson & May 1980; Briggs & Godfray

1996). We use a well-tested mechanistic mathematical model of

baculovirus transmission (Dwyer, Elkinton & Buonaccorsi 1997;

Elderd, Dushoff & Dwyer 2008; Fuller, Elderd & Dwyer 2012) to

examine how temperature affects baculovirus infection rates in

fall armyworm larvae. The model is a modification of the well-

known susceptible-exposed-infected-removed or ‘SEIR’ model

(Keeling & Rohani 2008), extended to allow for host heterogene-

ity in larval infection risk. Given our experimental set-up, we

simply needed to keep track of the change in susceptibles over

the course of the experiment (See the Supporting information for

the full model). Traditionally, SEIR models assume that the

change is linear over time such that:

dS

dt
¼ �bSV: eqn 1

Here, b is the transmission rate of the disease. S and V repre-

sent the density of uninfected or ‘susceptible’ hosts and virus-

killed cadavers, respectively. Eqn 1 assumes that all individuals

are equally susceptible to the virus. When individuals vary in

their risk of contracting the disease, eqn 1 becomes:

dS

dt
¼ ��bSV

SðtÞ
Sð0Þ

� �K2

: eqn 2

The above equation assumes that the transmission rate follows a

probability distribution with mean transmission rate �b and coeffi-

cient of variation K, which describes the variability about the

transmission rate. Heterogeneity in risk is captured by the

transmission scaling factor SðtÞ
Sð0Þ
h iK2

, which starts at one and declines

as the number of susceptibles decreases during the epizootic from

time 0 to time t. As K increases, the population becomes more het-

erogeneous. This results in transmission between individuals declin-

ing more rapidly when compared to smaller values of K. Due to

this decline in transmission, the greater the population’s heteroge-

neity in risk to the virus the lower the final fraction of infected indi-

viduals (Fig. 1). Conversely, as heterogeneity decreases, K ? 0 and

eqn 2 becomes eqn 1.

Due to the fact that the field experiments take place in an

enclosed environment, there is no change in the density of the

virus or the host. Given this, we set V = V0 and solve eqn 2:

SðTÞ
Sð0Þ ¼ 1þ K2�bV0T

� ��1=K2

eqn 3

where T is the time at the end of the experiment, so that S(T)/S

(0) is the fraction of uninfected larvae and V0 is the initial
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virus-killed cadaver density. By fitting this equation to the data

from field transmission experiments, we can estimate the mean

transmission rate �b and the variability in transmission K. If we

assume that there is no heterogeneity in the population, the

above equation becomes S(T)=Sð0Þ ¼ expð�bV0T). This is the

solution for eqn 1 when integrating from 0 to T. Using the exper-

imental data to calculate the fraction infected, 1�S(T)/S(0), we

can compare between models that assume no heterogeneity

between individuals to models that assume heterogeneity exists.

As we show, heterogeneity is important for describing disease

transmission. Given that, we can then determine whether or not

temperature changes the mean transmission rate �b , the coeffi-

cient of variation associated with the transmission rate K, or

both.

the analyses

First, we calculated the effects of the OTCs on temperature and

humidity using the iButton data. For each of the three experi-

mental trials, we calculated the daily average of daytime and

night-time temperatures as well as humidity. Humidity measure-

ments were transformed using the empirical logit (Warton & Hui

2011). The effects of the OTC treatment on the daily and nightly

averages were analysed using a mixed-effect repeated measures

analysis of variance (rmANOVA), in which plot was treated as a

random effect. All assumptions of the analysis were met (Pinheiro

& Bates 2004). Each of the experimental trials were analysed sep-

arately, as was true for all analyses conducted.

To test for the effects of temperature on transmission, we fit a

suite of candidate models (Table 1) to the data using eqn 3 and

its linear counterpart. If there was virus mortality in the controls,

we used Abbott’s method to correct the data (Morgan 1992). We

assumed a binomial error distribution (McCullagh & Nelder

1989) to calculate the likelihood of the data. To choose which

model best fits the data, we used the small sample correction of

the Akaike Information Criterion, AICc. AICc scores, in turn,

were compared using ΔAICc and AIC weights. ΔAICc was

defined as the difference between the AICc score and the lowest

AICc score of the models being compared. Thus, the best-fit

model had a ΔAICc of zero. ΔAICc scores were used to calculate

the AICc weights associated with each model, which was defined

as the weight of evidence for a particular model given all models

considered (Burnham & Anderson 2002). By comparing across

models, we tested whether increased temperature changed the

mean transmission rate �b, the coefficient of variation K associated

with transmission or both. Given the best-fit model for each

experimental trial, we then bootstrapped estimates of �b and K

using 10 000 bootstrap samples (Efron & Tibshirani 1998). This

allowed us to estimate 95% confidence intervals (CI) for the

transmission parameters.

In the light of the best-fit models (Table 1), we examined the

relationship between the model parameters and temperature

across the three separate experiments we conducted. We regressed

the log-transformed value of the five estimates of K and the

untransformed estimates of �b obtained from the experiments

against either the daytime or night-time average temperatures. As

the relationship between daytime temperature and K was signifi-

cant, we calculated the 95% CI associated with the slope of the

regression using the 10 000 bootstrapped estimates of K for the

best-fit models and calculated the resulting slope. This as well as

all other analyses was conducted in R (R Development Core

Team 2011).

the laboratory experiments

Since the baculovirus must be ingested along with the leaf tissue

on which it resides for an infection to occur, we also examined

how leaf consumption rates changed under increased tempera-

ture. We chose two temperatures that correspond to the current

July average temperature, 28�9 °C, and projected 2099 tempera-

ture, 33�5 °C, for Baton Rouge, LA (NOAA Geophysical Fluid

Laboratory Climate Model 2.1, Scenario A2), which represents a

4�6 °C difference. We reared 37 larvae in total to the fourth

instar and presented them with a pre-measured soybean leaf

Table 1. Number of parameters (k), AICc scores, ΔAICc and

AICc weights for each experiment. For the models considered,

climate effect is due to OTCs raising temperatures in the experi-

mental plots. CV > 0 assumes heterogeneity in disease risk.

When CV = 0, no difference in risk is assumed such that every

larva is equally at risk. �b refers to estimates of mean transmission

rate. Best-fit model is in bold. Note that CV is equivalent to K

in eq. 2.

Model k AICc ΔAICc

AICc

wt

October 2010

No climate effect with CV = 0 1 29�2 8�0 0�01
No climate effect with CV > 0 2 24�2 3�0 0�09
Climate effect, difference in
�b with both CVs = 0

2 28�0 6�8 0�01

Climate effect, difference in
�b and CV with both CVs > 0

4 23�7 2�5 0�12

Climate effect, difference in �b and

CV with control CV = 0

3 26�0 4�8 0�04

Climate effect, difference in �b and

CV with treatment CV = 0

3 25�9 4�7 0�04

Climate effect, difference in CV

only

3 21�2 0�0 0�42

Climate effect in �b only 3 22�1 0�9 0�27
July 2011

No climate effect with CV = 0 1 43�1 4�8 0�04
No climate effect with CV > 0 2 38�3 0�0 0�46
Climate effect, difference in �b
with both CVs = 0

2 45�4 7�1 0�01

Climate effect, difference in �b and

CV with both CVs > 0

4 42�0 3�7 0�07

Climate effect, difference in �b and

CV with control CV = 0

3 47�0 8�7 0�01

Climate effect, difference in �b and

CV with treatment CV = 0

3 40�9 2�6 0�13

Climate effect, difference in CV

only

3 40�6 2�3 0�15

Climate effect in �b only 3 40�7 2�4 0�14
September 2011

No Climate effect with CV = 0 1 57�8 10�2 0�00
No Climate effect with CV > 0 2 52�7 5�1 0�03
Climate effect, difference in �b
with both CVs = 0

2 52�5 4�9 0�04

Climate effect, difference in �b and

CV with both CVs > 0

4 50�1 2�5 0�12

Climate effect, difference in �b and

CV with control CV = 0

3 52�8 5�2 0�03

Climate effect, difference in �b and

CV with treatment CV = 0

3 50�3 2�7 0�11

Climate effect, difference in CV

only

3 47�6 0�0 0�42

Climate effect in �b only 3 48�6 1�0 0�25
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(CI202 Leaf Area Meter, CID) from the Gasoy 17 variety. The

larvae were placed in two growth chambers. One maintained the

temperature at the current average and the other at the projected

temperature. For this experiment, we were limited in the number

of chambers available and only had access to two. During the

experiment, larvae fed for 8 h at the treatment temperatures, a

period of time sufficient to ensure that the larvae did not eat the

entire soybean leaf. The leaf consumption rate was estimated as

the difference between the post-feeding leaf area minus the pre-

feeding leaf area divided by time. The data, which met all analy-

sis assumptions (Faraway 2006), were analysed using a linear

model with temperature as the response variable.

As development rate could also affect baculovirus transmission

dynamics due to sloughing of the host’s midgut cells prior to

moult (Engelhard et al. 1994), we conducted a separate experi-

ment on development rate. For this experiment, we reared up to

240 larvae from hatch to pupation under current and projected

temperatures in four chambers with 60 larvae per chamber. Two

chambers were maintained at the current average temperature,

and two were maintained at the projected temperature. During

rearing, the chambers were set to a 16-h day and 8-h night cycle.

We recorded time to pupation, weight at pupation and sex of the

pupa. Time to pupation was log-transformed prior to analysis.

The data, which met all analysis assumptions (Pinheiro & Bates

2004), were analysed using a linear mixed-effects model with tem-

perature as a fixed effect and growth chamber as a random effect.

As we measured two response variables for each individual, we

used a standard Bonferroni correction (Faraway 2006).

Results

The open-top chambers or OTCs significantly increased

daytime temperatures (Fig. 2 and Table S1, Supporting

information). During the night, the OTCs warmed the

plots, but only during the September 2011 experiment was

there a significant increase in night-time temperature.

Average daytime temperatures in the OTCs increased by

2�1 °C, 1�6 °C and 4�4 °C in the October 2010, July 2011

and September 2011 experiments, respectively. In Septem-

ber 2011, night-time temperatures increased by 1�1 °C.
There was little effect of the OTCs on humidity (see Table

S2, Supporting information) with a only marginally signif-

icant increase in humidity during the daytime in Septem-

ber 2011 (Warmed mean: 51%; 95% CI: 50�5%, 54�2%;

Control mean: 42%; 95% CI: 37�8%, 46�3%). In general,

July 2011 had much lower temperatures than either Octo-

ber 2010 or September 2011 (Fig. 2). This was due to

unusually cool and cloudy conditions during July 2011.

Because temperatures were forecasted to increase up to

5 °C at the experimental site by 2099 (Karl, Melillo &

Peterson 2009), the temperature increases across the

experimental treatments were within realistic bounds of

current and future projections.

Transmission, measured by the natural log of the frac-

tion infected, increased under warmer temperatures. Dur-

ing October 2010 and September 2011, when daytime

temperatures for control and warmed plots were much

higher than July 2011, over 90% of the AICc weights

were accounted for by models that had temperature as a

factor (Table 1). The best-fit model assumed that the

mean transmission rate between the control and warmed

plots did not differ. Instead, the best-fit model showed

that the differences between control and warmed plots

were due to a decrease in heterogeneity. A decrease in het-

erogeneity resulted in individuals having more similar

transmission rates in the warmed plots as compared to

control plots. The models that included differences in het-

erogeneity represented 62% and 68% of the AICc weights

for the October 2010 and September 2011 experiments,

respectively. Thus, by decreasing heterogeneity and not

mean transmission rates, infection increased under war-

mer temperatures (Fig. 3a and c). There was also support

for temperature effects on mean transmission rate, �b with

ΔAICc values close to 1�0 (Burnham & Anderson 2002).

(a) (b)

Fig. 2. Average temperatures (�C) in con-

trol (closed circles) and warmed (open cir-

cles) treatments during the (a) day (10

am–4 pm) and (b) night (10 pm–4 am).
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During July 2011, when temperatures in general were

cooler, the null models accounted for 50% of the AICc

weights (Table 1 and Fig. 3b). Overall, when temperature

differences were greater between control and warmed

plots (i.e. October 2010 and September 2011), transmis-

sion increased in the warmed plots due to a decrease in

heterogeneity of risk.

While there was a great deal of evidence that warming

affected disease transmission (Fig. 3), whether the effect

was due to changes in transmission rate �b, heterogeneity
in transmission rate K or both was less clear given the

direct comparison of the AIC values (Table 1). However,

bootstrapped values of K and �b associated with the best-

fit model along with their degree of overlap provided

additional evidence that heterogeneity in the transmission

rate could be of greater importance. For both the October

2010 and September 2011 experiments, the parameter esti-

mate for the coefficient of variation K decreased as tem-

peratures rose, which had a large effect on transmission

dynamics by increasing the fraction infected (Fig. 3a and

c). Additionally, the difference in the 95% CI of the boot-

strapped estimates of K between warmed and control

treatments did not overlap with zero (October 2010 med-

ian: �0�75; 95% CI: �1�178, �0�357; September 2011

median: �0�42; 95% CI: �0�804, �0�104). The above

results lent further support for experimental transmission

differences arising from a decrease in heterogeneity of risk

in warmed plots. Across experimental trials, the estimate

for �b was higher for September 2011 (0�057; 95% CI:

0�038, 0�172) than October 2010 (0�010; 95% CI: 0�006,
0�039) with some overlap in the 95% CI. Moreover, the

disease transmission rate estimates were of the same mag-

nitude, and the effects of temperature on heterogeneity

estimates were much greater. In general, as temperatures

rose, a larger fraction of individuals became infected dri-

ven by a decrease in the coefficient of variation K associ-

ated with heterogeneity of risk.

When examining the coefficient of variation across all

experimental trials, increasing temperatures decreased the

logarithm of the coefficient of variation K (Fig. 4a,

F1,3 = 18�50; P = 0�02312; Fig. 4b, slope: �0�11; 95% CI:

�0�216, �0�030). Therefore, as temperature increased, K

decreased at an exponential rate. There was no effect of

daytime temperature on �b (F1,3 = 2�96; P = 0�1839). The

(a) (b) (c)

Fig. 3. Effects of the experimental manipulation of cadaver density (i.e. virus-killed first instar larvae) on the fraction infected in the

control (closed circles) and warmed (open circles) treatments for (a) October 2010, (b) July 2011 and (c) September 2011. The lines repre-

sent the best-fit model in Table 1 for each date. For July 2011, the points are jittered for sake of clarity, and a single line represents the

best-fit model of no difference between control and warmed treatments. For September 2011, five plots in the warmed treatment con-

tained no survivors, which would result in a negative log of infinity. For plotting, but not analytical purposes, the per cent survival was

adjusted (Collett 2003). Note differences in Y-axes.

(a) (b)

Fig. 4. (a) Effects of average daytime temperature on the log-transformed coefficient of variation K for the disease transmission rate

and (b) histogram of the slope from bootstrapped estimates of K. The vertical solid line is the median, and the dashed vertical lines are

the 95% confidence intervals.
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effects of changes in the coefficient of variation could be

best seen by examining how infection rates change as

virus-killed cadaver density increases. Across experimental

trials, as temperature rose, the fraction infected increased

for a given pathogen-killed cadaver density (Fig. 5). In

Fig. 5, any increase in transmission rate �b across experi-

mental trials resulted in a decrease in the lowest density at

which an epizootic occurs. The small increase in �b across

trials would result in an epizootic starting with a smaller

amount of virus in the system. The decline in the coeffi-

cient of variation or heterogeneity in transmission, on the

other hand, causes the infection rate to increase more rap-

idly under increased temperatures. Together, these results

show that as temperatures increased, outbreak intensity

also increased by decreasing individual differences in dis-

ease risk.

In the laboratory experiments, feeding rates increased

[mean (SE) for current: 0�37 (0�0412) cm2 h�1; mean (SE)

for projected: 0�53 (0�0481) cm2 h�1; F1,35 = 6�7837,
P = 0�0134; See Fig. S2, Supporting information] and

developmental time decreased (mean (95% CI) for cur-

rent: 11�6 days (11�55, 11�73); mean (95% CI) for pro-

jected: 9�1 days (9�01, 9�11); Table 2; See Fig. S3A,

Supporting information) as temperature increased. Inter-

estingly, the decrease in developmental time did not affect

pupal weight (mean (95% CI) for current: 0�186 grams

(0�1785, 0�1940); mean (95% CI) for projected: 0�188
grams (0�1828, 0�1939); Table 2, See Fig. S3B, Supporting

information). This latter result ran counter to the temper-

ature–size rule, whereby increased temperatures should

result in decreased body mass (Angilletta 2009). For both

developmental time and pupal weight, the effect of sex

and the interaction between sex and temperature were not

significant (Table 2). In general, increased temperatures

affected both feeding behaviour and developmental times.

Discussion

One reason why the effects of climate change on disease

dynamics may be particularly hard to resolve is the lack

of empirical data associated with disease transmission and

climate change (Pascual & Bouma 2009). Using a host–

pathogen system in which empirical data could be easily

gathered, we showed that increasing temperatures

increased disease transmission and outbreak intensity.

While there was support for differences in transmission

rate (Table 1), the change in intensity, such that a greater

fraction of individuals were infected under warmer tem-

peratures, most likely resulted from a decrease in the het-

erogeneity of disease risk. In general, as temperatures

rose, the coefficient of variation in disease transmission

declined, whereas the mean transmission rate remained

relatively constant. This effect becomes especially distinct

at high cadaver densities (Fig. 5). Thus, warmer tempera-

tures by decreasing differences in disease risk among indi-

vidual larvae largely contributed to an increase in

outbreak intensity.

Increased leaf consumption under warmer temperatures

(See Fig. S2, Supporting information) may also play a role

in declining heterogeneity of risk. For most lepidopteran

baculoviruses, the host consumes foliage on which the virus

is residing (Miller 1997). As consumption increases, the lar-

vae have a greater likelihood of encountering and consum-

ing a lethal dose of virus. Perhaps, the individuals at the

lowest risk in a population are those that eat less leaf tissue

under cooler temperatures. Under warmer temperatures,

their consumption rates increase leading to higher infection

rates among the low-risk subgroup, thereby decreasing

overall population heterogeneity. Yet, this assumes that

larvae at the other end of the distribution (i.e. those that

eat a great deal already) are at an upper limit to feeding

rates. Given that we only used two temperatures, we did

not test this assumption, but the data could be easily

obtained. In general, changes in host activity in other path-

ogen-driven systems may result in similar dynamics.

For the feeding rate experiment, we only had two

growth chambers available. Thus, the increase in feeding

under warmer temperatures could have also resulted from

differences between growth chambers. However, the

measured random effects associated with the pupation

Fig. 5. The effects of the experimental treatments on fraction

infected during an epizootic. The increase in fraction infected

across dates and treatments is driven by a decrease in the trans-

mission rate’s coefficient of variation. To calculate the fraction

infected, the best-fit model for each experiment was used. For

example, we used the null model (i.e. no difference between treat-

ments) to construct the July 2011 Null line.

Table 2. Effects of current and 2099 projected July average tem-

peratures in Baton Rouge, LA, on time to pupation and weight

at pupation

Response

variable Effect d.f. F-value

P-

value

Time to

pupation

Temperature 1,2 1105�8 0�0009
Sex 1,209 1�5 0�2255
Temperature*Sex 1,209 0�0303 0�8261

Weight at

pupation

Temperature 1,2 0�182 0�7714
Sex 1,209 2�070 0�1517
Temperature*Sex 1,209 0�674 0�4125
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experiments, which were conducted in four growth cham-

bers, were relatively small given the non-significance of

the likelihood ratio test (LRT) between a model that

contained a random effect for chamber and one that did

not (LRT time to pupation ratio = 6�65 9 10�9,

P = 0�9999; LRT weight at pupation ratio = 2�44 9 10�8,

P = 0�9999). Thus, the potential effect of the growth

chamber on our feeding rate results should also be rela-

tively low.

Insect physiology may also be important for determin-

ing infection rate as it can affect the probability of

becoming infected after consuming the pathogen. A

higher rate at which midgut cells are sloughed decreases

the probability of infection because sloughing eliminates

the pathogen from the host (Engelhard et al. 1994). Tem-

perature can increase sloughing rate by decreasing devel-

opmental time (See Fig. S3A, Supporting information)

due to the fact that the midgut is sloughed prior to moult-

ing to the next instar (Engelhard et al. 1994). Thus,

changes in developmental rate also represent a potential

mechanism that may affect disease transmission dynamics

under warmer temperatures.

In general, both changes in feeding rate and the physio-

logical response of the larvae can alter infection risk.

Whether the change in risk based on feeding behaviour or

insect physiology will result in differences in transmission

rate or declines in heterogeneity of risk needs to be a sub-

ject for further study. Given that warmer temperatures

will affect epizootic intensity and disease transmission, a

natural progression is to more fully examine what mecha-

nisms cause these changes. Investigating the mechanism

or mechanisms responsible will help link individual physi-

ology and development with population and community

dynamics as the climate warms (O’Connor, Gilbert &

Brown 2011).

Interestingly while developmental time decreased, final

pupal weight did not decrease, which does not support

the temperature–size rule (Angilletta 2009). However,

there are a number of exceptions to this rule (Angilletta

& Dunham 2003; Kingsolver 2009) with a great number

occurring in the Lepidoptera (Atkinson 1994). However,

the relationship that we found is inferred by two tempera-

ture points, which limit our ability to definitively say that

the fall armyworm does not follow the temperature–size

rule. Yet, given the trend in Lepidoptera, the fall army-

worm may be another example where increased tempera-

ture does not result in decreased body size.

While the field experiments were subject to natural vari-

ability in temperature, the laboratory experiments were

conducted using the current mean and 2099 projected

mean temperatures. Others have shown the importance of

considering temperature variability and its impact on dis-

ease transmission (Duncan, Fellous & Kaltz 2011; Yakob

& Mumby 2011; Ben-Horin, Lenihan & Lafferty 2013).

Future work, in this system and others, should examine

how both changes in the mean and variation about the

mean temperature affect not just the host but also the

pathogen and the host–pathogen interaction. For exam-

ple, baculovirus-infected tent caterpillars die more quickly

at higher temperatures (Frid & Myers 2002), which can

alter epizootic dynamics. Alternatively, increased tempera-

tures could act similarly to physiological or behavioural

fevers, which can increase recovery rates (Angilletta

2009). In general, investigating both changes in the mean

temperature and the variability about the mean would

provide additional insight into how temperatures may be

affecting multiple facets of disease transmission.

A potential limitation of our results stems from how we

measured temperature. In our experiments, the tempera-

ture recorded in each plot does not directly measure the

temperature of the organism. Ideally, we would have

directly measured internal temperature or placed thermis-

tor wires next to the animal to get a closer estimate of the

larva’s internal temperature (Porter 1982; Frid & Myers

2002). Given that the transmission experiments were con-

ducted in a sewn mesh bag, the logistics of using other

methods for recording temperature proved difficult. How-

ever, the organism’s temperature would be expected to

track the ambient temperature except at temperature

extremes near the organism’s thermal maximum (Frid &

Myers 2002). Instead of true measurements of the host’s

temperature, the iButtons used in the plots measured

ambient temperature, which served as a measure of the

relative difference in temperature between individual larva

in the control and warmed plots.

We also have examined changes in disease transmission

over the course of a single transmission event. Whether

these changes in physiology or development lead to more

frequent or less frequent outbreaks over the long term

(i.e. multiple generations) will depend upon host, patho-

gen and host–pathogen responses to increased tempera-

tures. For instance, host fecundity will most likely be

affected by rising temperatures (Crozier & Dwyer 2006).

Additionally, we have focused our efforts on understand-

ing transmission dynamics from the host’s perspective.

Changes in temperature and environmental conditions

can also affect the pathogen (Fuller, Elderd & Dwyer

2012; Paaijmans et al. 2012). Lastly, while we have

focused on temperature, other abiotic factors affected by

climate change such as precipitation (Karl, Melillo &

Peterson 2009) may either amplify or depress the effects

of temperature on disease transmission. Examining the

effects of increased temperatures and other abiotic factors

over longer temporal scales will add understanding to

how climate change will affect both the short-term

dynamics of disease transmission and the long-term

dynamics of the host population.

It may also be important to consider an organism’s

phenotypic plasticity in response to climate change and

how plasticity affects transmission dynamics. It is well

known that phenotypic plasticity in lepidopteran larvae

affects the susceptibility of the larvae to pathogen infec-

tion. For instance, Spodoptera exempta, the African army-

worm, has distinct phenotypes that differ depending upon

© 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society, Journal of Animal Ecology, 83, 838–849
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whether the larvae are reared alone or in groups. The lar-

vae reared in groups show increased melanin and pheno-

loxidase production (Wilson et al. 2001). The increase of

these two compounds results in decreases in baculovirus

infection and parasitic rates (Reeson et al. 1998, 2000;

Wilson et al. 2001). Thus, as density increases, the larvae

exhibit density-dependent prophylaxis by investing in

immune responses that may inhibit disease transmission.

However, the opposite may also occur as increased densi-

ties can result in increased transmission due to larval

stress as seen with the gypsy moth (Reilly & Hajek 2008).

Interestingly, larvae in the Spodoptera genus also have the

ability to self-medicate by modifying their diet (Lee et al.

2006). In our experiments, an increase in temperature

may have resulted in a decrease in the phenotypic plastic-

ity of responses available to an individual organism as the

organism is pushed towards the upper limit of its thermal

tolerance. To determine whether the fall armyworm is

near its upper limit requires additional experiments with

an increase in the number of temperatures tested. To

understand the extent to which phenotypic differences

play a role in controlling the decline in transmission rate

heterogeneity represents an area for future research.

For the host, changes in metabolic rate may also be

important for determining transmission dynamics as met-

abolic rates depend upon the temperature of the environ-

ment (Gillooly et al. 2001; Angilletta 2009). In other

systems, changes in metabolic rates result in changes in

consumer–prey (O’Connor, Gilbert & Brown 2011) and

host–macroparasite interactions (Molnar et al. 2013). For

the fall armyworm, decreased developmental times most

likely arose due to increased metabolic rates. How the

pathogen responds to changes in developmental times

and warmer temperatures needs to be examined as well

(Rohr et al. 2011). In general, incorporating aspects of

the metabolic theory of ecology (Gillooly et al. 2001;

Brown et al. 2004; Rohr et al. 2011) in a host–pathogen

framework represents a promising avenue from both an

empirical (O’Connor, Gilbert & Brown 2011) and theo-

retical (Vasseur & McCann 2005; Molnar et al. 2013)

perspective.

Clearly, climate change is having dramatic impacts on

species demography and distributions (Crozier & Dwyer

2006; Adler & HilleRisLambers 2008; Doak & Morris

2010). Yet, little is known about how rising tempera-

tures will affect disease transmission and intensity due

to the limited amount of field data. Our results show

that increasing temperatures increase disease transmis-

sion between host and pathogen. In our system, the

best-supported proximate cause arises from changes in

the coefficient of variation associated with host risk,

which differs considerably from those usually assumed

(e.g. changes in mean transmission rate in Moore et al.

2012). This can have important ecological and economic

consequences for the short-term and, potentially, the

long-term dynamics of disease outbreaks (Lafferty &

Holt 2003).
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Fig. S1. Open-top chamber (OTC) used to raise temperatures in

the field experiments.

Fig. S2. The effect of current and 2099 projected July average

temperature on the mean feeding rate (�95% confidence intervals)

of fourth instar larvae.

Fig. S3. Mean (�95% confidence intervals) of A) time to pupation
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Table S1. rmANOVA results for the effects of Open-Top Chambers
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transmission experiments showing the degrees of freedom (df), the

F-statistics, and the associated P-value.

Table S2. rmANOVA results for the effects of Open-Top Chambers

(OTCs) on daytime and nighttime humidity during the field
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F-statistics, and the associated P-value.
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