Neutron Spectroscopies

Quasi-Elastic Neutron Scattering

Jyotsana Lal Visiting A. Professor at LSU (LaCNS)

Production of neutron beams

Research reactors by nuclear fission, example HFIR, ORNL, FRM II, Munich, Institute Laue Langevin (ILL) Grenoble, France, <u>www.ill.fr</u>

Spallation sources by using linear proton accelerators (for example at ISIS at the Rutherford Appleton Lab. Oxford, Great Britain, see <u>www.isis.rl.ac.uk</u> or at the US Spallation Neutron Source (SNS) <u>www.sns.gov</u>), ESS-European Spallation Source.

(Updated from *Neutron Scattering*, K. Skold and D. L. Price, eds., Academic Press, 1986) Today's best sources typically 10⁷-10⁸ neutrons cm²s⁻¹ on the sample

K. Anderson, Lectures

Energy Spectrum of neutrons

Energy distribution of prompt neutrons from a reactor

Typical neutron energies and corresponding wavelengths used in experiments

i.	"hot" neutrons	E = 100 - 500 meV	$\lambda = 0.5 - 1 \text{ Å}$
ii.	"thermal" neutrons	E = 10 - 100 meV	$\lambda = 1 - 3$ Å
iii.	"cold" neutrons	E = 0.1 - 10 meV	$\lambda = 3 - 30 \text{ Å}$

Going beyond the center of mass diffusion

< 10^9 Hz slow motion $\Delta E \sim \mu eV$ lowest available E = 1-5meV neutrons Thus, define neutron E 1 part in 10^3 or better

V. García Sakai, A. Arbe Current Opinion in Colloid & Interface Science

Momentum Transfer q

cross section

number of neutrons/time/d Ω with energy transfer in the interval (h ω , h ω +d ω) normalized by incident flux

Incident neutron along z, wave vector k_i and energy E_i |k_i|= sqrt(2mE_i)/h

2 θ and ϕ define the direction of the scattered beam q= k_i - k_f wave vector or momentum transfer $\Delta p = hq/2\pi = h(k_i - k_f)/2\pi$

Energy transfer ΔE (TOF)

Lecture M. Telling

Exchange of energy and momentum with the sample

Scattering triangle (cosine rule)

$$Q^{2} = k_{i}^{2} + k_{f}^{2} - 2k_{i}k_{f}\cos 2\theta$$

Kinematic condition

$$\frac{\hbar^2 Q^2}{2m} = E_i + E_f - 2\sqrt{E_i E_f} \cos 2\theta$$

Coherent and Incoherent Scattering

Interference of neutron waves emitted from different atoms

Lecture: Gerald R. Kneller

Scattering Functions- Correlations

Remember that in the experiment we measure the total $S(Q, \omega)$ and that each term, coherent and incoherent is weighted by its respective cross-section σ

$$S(Q, \omega) = S_{inc}(Q, \omega) + S_{coh}(Q, \omega)$$
$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} \sum_{i} \langle \exp(-iQ \cdot R_i(0)) \exp(-iQ \cdot R_i(t)) \rangle \exp(-iwt) dt$$
$$S_{coh}(Q, \omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \sum_{i,j} \langle \exp(-iQ \cdot R_i(0)) \exp(-iQ \cdot R_j(t)) \rangle \exp(-iwt) dt$$

These expressions can also be re-written in terms of the self and collective intermediate scattering functions, I(Q,t), such that:

$$S_{\text{inc}}(\boldsymbol{Q},\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} I_{\text{self}}(\boldsymbol{Q},t) \exp(-iwt) dt$$
$$S_{\text{coh}}(\boldsymbol{Q},\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} I_{\text{coll}}(\boldsymbol{Q},t) \exp(-iwt) dt$$

Lecture: V. García Sakai

Neutron Scattering Spectrum

Elastic scattering – no energy exchange ħω=0. In an ideal world this should be a <u>delta</u> function. Of course, this is not the case giving rise to an <u>instrumental resolution</u>.

 $S(\boldsymbol{Q},\omega) = S^*(\boldsymbol{Q},\omega) \otimes R(\boldsymbol{Q},\omega)$

Inelastic scattering – there is energy exchange ħω≠0. Due to processes occurring <u>discrete energy steps</u> such as vibrational modes, stretching modes...

Quasi-elastic scattering (QENS)— there is small energy exchange ħω≠0≈neV or µeV. High energy resolution. Due to processes occurring with a distribution of energies (rotations, translations...).

V. G. Sakai, lecture

Map of the dynamical modes

V. G. Sakai, lecture

Energy transfer @

Quasi- and Inelastic Neutron Scattering

Lecture notes: Maikel C. Rheinstädter

Exploring the dynamic phase space

Instrumentation : direct geometry

To determine ΔE we need to define either E_i or E_f : Two methods

Measure : S(Q, ω) Define E_i

Send neutrons of known fixed E_i (v_i) –neutron can loose as much energy as it has but can gain any (defines energy window)

Source-sample and sampledetector distances known

Time at which neutron is sent, known

Time at which neutron is detected tells us E_f ; thus we know ΔE

http://www.ill.eu/instruments-support/ instruments-groups/instruments/in5/

V. G. Sakai, lecture

Instrumentation : indirect geometry

Measure : $S(Q,\omega)$ Define E_f

Send neutrons of a known band of wavelengths or E_i (v_i)s (defines your energy window)

In reactor source, use a Doppler drive; in a spallation source, use choppers

Analyser crystals reflect back only a fixed E_f (Bragg's Law)

Times & distances known, so detected neutron gives us ΔE

V. G. Sakai, lecture

Backscattering Spectrometer BASIS at SNS

QENS Spectrometers – Which one?

Direct geometry:

Poor resolution, higher energies, wider E transfer window, small Q range.

Indirect geometry:

@ reactor, highest resolution with good intensity but limited E transfer range

@ spallation, medium resolution, high flux, wider E transfer range

QENS scattering function

- $S(\boldsymbol{Q},\omega) = S_{\rm inc}(\boldsymbol{Q},\omega) + S_{\rm coh}(\boldsymbol{Q},\omega)$
- Incoherent scattering
- Contains no information about structure
- Describes the dynamics of individual particles

- Coherent scattering
- Contaminates elastic signal arising from structure
- Describes correlations between nuclei
- Describes the collective dynamics of nuclei

V. G. Sakai, lecture

H/D difference

	$\sigma_{ m coh}$ (b)	$\sigma_{ ext{incoh}}$ (b)	$\sigma_{abs}\left(b ight)$
Hydrogen	1.76	80.2	0.33
Deuterium	5.59	2.05	0.00
Carbon	5.56	0.00	0.00
Nitrogen	11.0	0.50	1.90
Oxygen	4.23	0.00	0.00
Phosphorus	3.31	0.01	0.17
Aluminium	1.50	0.01	0.23
Silicon	2.17	0.00	0.17

Scattering can be coherent – remembering spatial arrangement of molecules Incoherent – sensitive only to energy changes induced by molecular motion in the sample

Quasi-Elastic Scattering

Probes diffusion at a molecular scale

Is able to differentiate diffusion from confined dynamics

Analytical functions used to describe motions

Can be used as a systematic tool for comparisons

Time and spatial scale are directly comparable to results from Molecular Dynamics simulations

Complementarities with other experimental techniques

Unique view of motions (eg. contrast)

Single-particle dynamics (incoherent)

For uncoupled motions

 $S_{\text{inc}}(Q,\omega) = S_{\text{vib}}(Q,\omega) \otimes S_{\text{rot}}(Q,\omega) \otimes S_{\text{trans}}(Q,\omega)$ $I_{\text{self}}(Q,t) = I_{\text{vib}}(Q,t) \times I_{\text{rot}}(Q,t) \times I_{\text{trans}}(Q,t)$ translation motion decomposition $I_{\text{rotations}} = \frac{1}{2} \sum \left(\frac{iQ \cdot [V(t) - V(0)]}{2} \right) \left(\frac{iQ \cdot [T(t) - T(0)]}{2} \right) \left(\frac{iQ \cdot [R(t) - R(0)]}{2} \right)$

 $I_{self}(Q,t) = \frac{1}{N} \sum_{i} \left\langle e^{iQ \cdot [V(t) - V(0)]} \right\rangle \left\langle e^{iQ \cdot [T(t) - T(0)]} \right\rangle \left\langle e^{iQ \cdot [R(t) - R(0)]} \right\rangle$ Vibrations: Debye-Waller factor $DWF = \left\langle \exp(iQ \cdot u) \right\rangle = \exp(\left(\left(Q \cdot u \right)^{2} \right)) = \frac{1}{3} \exp(Q^{2} \left\langle u^{2}(T) \right\rangle)$ Simple Translational Diffusion $I(Q,t) = \exp(-Q^{2}Dt) \quad relaxation rate |\tau| = 1/(DQ^{2})$ $S_{\text{trans}}(Q,\omega) = \frac{1}{\pi} \frac{\Gamma}{\Gamma^{2} + \omega^{2}} \quad \text{ie. a Lorentzian}$

Models of translation diffusionrestricted diffusion

V. G. Sakai, lecture

More models including rotations

 $S_{\rm inc}(\boldsymbol{Q},\omega) = \exp(-Q^2 \langle u^2 \rangle) [A_0(\boldsymbol{Q}) \delta(\omega) + \left(1-A_0(\boldsymbol{Q})\right) L(\boldsymbol{Q},\omega)]$

Elastic stationary part, EISF

Quasi-elastic decaying part

 $EISF = \frac{S_{inc}^{el}(Q)}{S_{inc}^{el}(Q) + S_{inc}^{qel}(Q)}$

The EISF is the area of the elastic curve divided by the total area, i.e. The fraction of elastic contribution.

For any given Q

 $\int_{-\infty}^{+\infty} S_{\rm inc}(Q,\omega) \, d\omega = 1$

V. G. Sakai, lecture

Structural dynamics of water by neutron spectrometry

Unambiguous statements to be made about the dynamical nature of liquids in ; general and of water in particular.

J. Copley, NIST

Improved measurements IN6, ILL

Teixeira et al Phys. Rev. A 1985

Why investigate dynamics?

Available online at www.sciencedirect.com () DIRECT

Chemical Physics 292 (2003) 283-287

Chei

www.elsevier.com/loca

Physica B 301 (2001) 110-114

www.elsevier.com/locate/physb

Restricted dynamics in polymer-filler systems

S. Gagliardi^{a,*}, V. Arrighi^a, R. Ferguson^a, M.T.F. Telling^b

^a Department of Chemistry, Heriot–Watt University, Edinburgh EH14 4AS, UK ^bISIS, Rutherford Appleton Laboratory, UK

Max Wolff a,b,*, Andreas Magerla, Bernhard Frickb, Hartmut Zabelc

Quasielastic neutron scattering for the investigatior

of liquids under shear[☆]

* Lehrstuhl für Kristallographie und Strukturphysik, Universität Erlangen-Nürnberg, Bismarckstr. 10, 91054 Erlangen, Germany ^b Institut Max von Laue-Paul Langevin, Avenue des Martyrs, 38042 Grenoble, France ^c Lehrstuhl für Festkörperphysik, Ruhr-Universität-Bochum, Universitätsstr. 150, 44780 Bochum, Germany

Received 22 October 2002; in final form 20 December 2002

Water, Solute, and Segmental Dynamics in Polysaccharide Hydrogels

Francesca Cavalieri,¹ Ester Chiessi,¹ Ivana Finelli,¹ Francesca Natali,² Gaio Paradossi,*¹ Mark F. Telling³

¹Dipartimento di Chimica, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00173, Italy E-mail: paradossi@stc.uniroma2.it

² INFM-OGG, ILL, Rue J. Horowitz, Grenoble 38042 Cedex, France

³ Rutherford Appleton Laboratory, Chilton Didcot OX11 0QX, UK

By understanding microscopic dynamics tune a materials bulk properties

Lecture M. Telling

Dynamics of fresh and freeze-dried strawberry and red onion by quasielastic neutron scattering. J Phys Chem B. 2006; 110(28):13786-92 (ISSN: 1520-6106)

Jansson H: Howells WS: Swenson J Department of Applied Physics, Chalmers University of Technology,

SE-412 96 Göteborg, Sweden.

Letters to Nature Nature 337, 754 - 756 (23 February 1989);

Dynamical transition of myoglobin revealed by inelastic neutron scattering

Wolfgang Doster*, Stephen Cusack† & Winfried Petry‡

* Physik Department E13, Technischen Universität München, D-8046 Garching, FRG † EMBL Grenoble Outstation, Institut Laue-Langevin, 156X, 38042 Grenoble Cedex, France Institut Laue-Langevin, 156X, 38042 Grenoble Cedex, France

Quasi-elastic neutron Scattering measures $S(q,\omega)$ (BASIS at SNS)

The line width of $S(q,\omega)$ is related to diffusion of small molecules like water in confined nanometer channels (PHYSICAL REVIEW E 76, 021505 2007)

http://neutrons.ornl.gov/research/highlights/BASIS/

Fast Proton Hopping Detection in Ice Ih by Quasi-Elastic Neutron Scattering

I. Presiado, JL et al. J. Phys. Chem. C. 2011

Energy-Time domains

Maikel C. Rheinstädter