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ABSTRACT 

Purpose: To ascertain if PET image data of a positron tracer can be used for the 

quantitative description of dose distribution in support of direct prostate seed dosimetry. 

Materials and Methods: Simulated brachytherapy seeds were constructed 

containing trace amounts of a positron emitter, F-18, such that all annihilation events 

took place in the encapsulation wall. An acrylic prostate phantom containing these seeds 

was imaged with a GE Discovery ST PET/CT scanner in 2D and 3D acquisition modes 

and several image reconstruction methods.  The PET scan data was used as the input for 

Monte Carlo calculation of dose distribution due to the F-18.  This dose distribution was 

then compared to computations wherein the source was restricted to the encapsulation 

wall.  This was done to determine if the measured data could be used to accurately 

compute the annihilation dose, which in turn would be used to compute the therapeutic 

dose due to known seed activity. 

Results: Examination of the dose distributions indicates a close agreement 

between the measured data and theoretical calculations for certain cases.  We found that 

2D acquisition with OSEM reconstruction resulted in a maximum difference in transaxial 

dose distribution of 15% in a single voxel, and a mean difference of 4% for the remaining 

voxels. However, the mean discrepancy between dose computations based on the ideal 

source versus PET based source is within or close to the Monte Carlo error of 2% to 4%.  

These results do not reflect any optimized acquisition protocol that may further reduce 

the observed differences. 

Conclusions: This work indicates there is potential for using PET data for the 

proposed link between the therapeutic brachytherapy dose and the dose due to a trace 

 x



amount of encapsulated positron emitter, as developed by Sajo and Williams. Because 

this method does not require explicit information on seed locations, clinical 

implementation of this technique could significantly reduce the time needed for post-

implant evaluation, and several of the uncertainties and limitations inherent in current 

prostate brachytherapy dosimetry. 
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CHAPTER 1 

PROSTATE BRACHYTHERAPY 

1.1 Introduction 

Brachytherapy is the clinical use of small encapsulated radioactive sources at a 

short distance from the target volume for irradiation of malignant tumors.[1] Interstitial 

prostate brachytherapy is the permanent implantation of radioactive seeds directly into 

the prostate.  Brachytherapy delivers dose locally to the prostate, but dose gradients are 

much higher than that for external beam treatment.  Over the last decade, technical 

innovations, 3D image-based planning, template guidance, computerized dosimetry 

analysis, and improved QA practice have converged in synergy in modern prostate 

brachytherapy which promise to lead to increased tumor control and decreased 

toxicity.[2] 

Conventionally, post-operative dosimetry relies on the procedure of seed 

localization: seeds are identified on CT or other types of image, and their coordinates are 

used to perform a point-source dose calculation. This localization process is time 

consuming. A new technique for direct dosimetry of prostate interstitial implants has 

been proposed, in which a positron emitter is placed inside the implanted seeds.  A 

theoretical correspondence has been established between the therapeutic dose distribution 

and the positron annihilation event distribution for brachytherapy sources with trace 

amounts of positron emitting isotopes.[3] This could result in an automated direct 

prostate implant dosimetry method utilizing PET/CT imaging that does not explicitly 

require the location or orientation of the seeds.  While this method is limited primarily by 

poor PET resolution, errors associated with seed localization and the simplified dose 
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computation would be substantially reduced.  An operator-independent standard method 

of dosimetry could also reduce several other sources of uncertainty, discussed in sections 

1.5-1.9, while providing a means to quantify the impact of several less understood issues.  

Ultimately, a better understanding of these factors could improve brachytherapy 

planning, prescription, and treatment, potentially yielding increased tumor control and 

reduced morbidity. 

1.2 Thesis Overview 

Because the therapeutic dose is linked with this technique to the dose from 511 

keV photons due to positron annihilation, first we needed a feasible method for resolving 

whether the positron annihilation distribution data could be extracted from the PET/CT 

scanner.  Our hypothesis is that PET image data of positron emitting seeds can be used 

for the quantitative determination of therapeutic dose distribution.  We devised a way to 

test experimentally the validity of using the PET/CT images for obtaining the positron 

annihilation dose distribution and to establish the accuracy of using these data for dose 

calculations. 

Specific Aims: 

1. Acquire PET/CT images of seeds containing F-18 inserted in an acrylic phantom 

to obtain annihilation event distribution data. 

2. Compare Monte Carlo dose calculations for localized annihilation events of an 

ideal distribution to those using the Discovery ST PET/CT measured event 

distribution. 

We prepared simulated brachytherapy seeds containing trace amounts of a 

positron emitter that were then imaged inside an acrylic prostate phantom using Mary 
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Bird Perkins Cancer Center’s Discovery ST PET/CT scanner.  The scanner output was 

extracted and formatted for source input into Monte Carlo calculation experiments.  We 

conclude with comparisons of the calculated dose from the theoretical and the measured 

distributions of the simulated seeds. 

This first chapter explores the potential significance of developing this novel 

technique by examining known sources of uncertainty identified with prostate 

brachytherapy dosimetry.  The second chapter focuses on the experimental data 

acquisition with the PET/CT scanner along with discussion of several key imaging issues.  

The third chapter provides input and result details for the Monte Carlo calculation 

experiments.  The results of the voxel-by-voxel energy deposition comparison due to 

theoretical and simulated brachytherapy seeds are discussed in the final chapter. 

 This technique relies on the hypothesis that the spatial distribution of positron 

annihilation reactions, which is measured by PET, can be linked to the therapy dose 

distribution.[3] Using the Green’s function of radiation transport representing the angular 

flux, the point kernel may be obtained for the positron emitter and therapy isotope.  Sajo 

and Williams have demonstrated that the Fourier transform of the therapy dose 

distribution, TD~ , is related to the Fourier transform of the positron annihilation dose 

distribution, PD~ , by the ratio of the Fourier transforms of the point kernels, ( ) TP GG ~~ 1−
, in 

Equation 1.1.  

( ) PTPT DGGD ~~~~ 1−
=   (1.1) 

The goal of this thesis is to demonstrate that PD~ can be calculated from PET 

image data, and to assess the quality of the calculated positron dose distribution 

compared to the expected ideal distribution. 
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1.3 Prostate Cancer 

Excluding skin, prostate carcinoma is the most common malignancy in men in the 

United States resulting in 232,090 cases in 2005 and an annual death rate of about 

37,000.[4] Approximately 60% of new cases are confined to the organ at the time of 

diagnosis.  Only about 2.2% of new cases were treated with brachytherapy in 1995, 

whereas today about 30% of eligible patients receive implants.[5] The increase was due 

to improvements in diagnosis with prostate specific antigen (PSA) test and improved 

transrectal ultrasound (TRUS) guided implants.  In the majority of cases, two 

radioisotopes are currently utilized for interstitial prostate brachytherapy, Iodine-125 (I-

125) and Palladium-103 (Pd-103).  Modern brachytherapy treatment technique allows 

delivery of higher localized radiation dose than exclusive external beam.[6] As discussed 

below, clinical outcome correlates with parameters of dose coverage and prostate volume 

coverage. 

Brachytherapy dosimetry has exploded in recent years.  Because of the 

overwhelming number of submissions, The journal of Medical Physics has established a 

“seed policy” in 2001 that, in effect, limits printing of articles to Technical Notes unless 

they contain significant new science.[5] The AAPM recommended that dosimetry results 

be published by independent investigators, but did not offer a strict definition of what this 

independence entails.[7] The American Association of Physicist in Medicine (AAPM) 

Task Group 43 report (TG-43) provides a standardized dosimetry protocol for 

brachytherapy dose calculations.[8] The Radiation Therapy Committee formed Task 

Group 43 in 1988 to review dosimetry of interstitial brachytherapy sources and 

recommend a protocol. The final TG-43 report was issued in 1995, but a recent update, 
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TG-43U1, was published in 2004.[5] Because prostate brachytherapy was so popular, 

TG-43 was cited 266 times in Medical Physics from 2000-2003.[9] There are two other 

important task group reports on brachytherapy, TG-56 and TG-64.  TG-56 outlines a 

code of practice for the implementation of brachytherapy in general where TG-64 focuses 

on clinical medical physics issues unique to permanent prostate seed implants.[1, 2] 

1.4 Clinical Rationale for Postimplant Dosimetry 

A quantitative dose analysis must be carried out for each patient.  The importance 

of post-implant analysis can not be overemphasized for the purposes of multi-institutional 

comparison, improving techniques, evaluating outcome, and identifying patients who 

might benefit from supplemental therapy or be at risk for long term morbidity.[2] Several 

studies demonstrated that clinical outcome in prostate brachytherapy correlates with dose 

coverage parameters of dose delivered and prostate volume coverage.[5] The minimum 

dose delivered to 90% of the contoured prostate volume, D90, is generally considered to 

be the most significant dosimetric quantifier.  Accurate treatment is the delivery of the 

radiation oncologist’s prescribed absorbed dose.  In fact, the quality of the implant 

depends on the dosimetric evaluation consisting of the dose delivered to the prostate 

compared to the dose delivered to the normal tissue.[10] A major concern of many 

radiation oncologists practicing brachytherapy has been the difficulty of interpreting 

clinical dose response data from the literature due, in large part, to the lack of 

standardized practices of reporting dose.[1] 

Dosimetry is important for cancer control, but also for morbidity 

development.[11] Treatment morbidity may be acute, sub-acute, or chronic and affects 

most commonly the urinary, lower gastro-intestinal and sexual functions. There are no 
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standards for specifying the dose to these organs, and each case presents a unique set of 

circumstances.[2] Urinary is the most common morbidity, but it is very hard to define the 

urethra on a CT image unless there is a Foley catheter inserted.  Distension of the rectum 

can cause variability in assessing rectal dose due to the typically large dose gradient in 

this region.  The rectal wall is adjacent to the prostate, making it difficult to not deliver 

the therapy-equivalent dose to the rectum.  The tradeoff is increased risk of rectal wall 

ulceration versus under-dosing part of the prostate.  Based on CT scans taken 2-4 hours 

after implantation, the rectal surface that receives greater than 90 Gy appears to correlate 

significantly with rectal bleeding and ulceration.[12] Lack of standard assessment 

methods and potential biases contribute to difficulties in evaluating morbidity.[13]  

Stock and colleagues from Mount Sinai Hospital in New York were the first to 

report a dose-response relationship.  The relationship between biochemical relapse-free 

survival (BRFS) and D90 was correlated one-month post implant for 134 patients.  

Specifically, the 4 year BRFS was 92% in patients with D90 above 140 Gy compared to 4 

year BRFS of 68% in patients with D90 below 140 Gy (p = 0.02).[14] A recent update of 

Stock found the estimated 8 year BRFS was 82% in patients (n = 145) with D90 over 140 

Gy, compared with 68% in patients (n = 98) with D90 below 140 Gy (p = 0.007).[15] In 

patients with favorable features (stage < T2b, PSA < 10 ng/mL, and Gleason score < 7), 

the estimated 8 year BRFS was 94% in the optimal dose group, compared to 75% in the 

sub-optimal dose group (p = 0.02). 

Ten-year data show that permanent prostate brachytherapy is comparable in 

effectiveness with external beam irradiation or radical prostatectomy.  A 2001 report by 

Potters for 719 men found a four year biochemical freedom from recurrence (BFR) of 
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80.4% with D90 < 90% and a four year BFR of 92.4%(p = 0.001) in men with D90 > 90% 

of the prescribed dose.[16] A 2003 report by Potters for 883 men found the ten year BFR 

rate was 79.1%, and the addition of external beam radiotherapy, hormonal therapy, and 

isotope selection did not have an impact on BFR.[6] Clearly, D90 was found to be the 

most significant predictor of BFR at ten years.  The only dose-specific index that was 

predictive of BFR in Potter’s work was D90. 

The extensive clinical experience of Memorial Sloan Kettering Institute (1078 

patients with the retropubic approach to surgery) from 1970-1987 revealed a D90 implant 

dose of 140 Gy to be an independent predictor of recurrence free local control at 5, 10, 

and 15 years (p = 0.001) using multivariate analysis.[17] Wallner and colleagues reported 

the preliminary results for 115 patients in 2003 that for patients with D90 above 100% of 

the prescribed dose the 3-year BRFS was 97% compared to 82% if D90 was less than 

100% (p = 0.01).[18] 

Studies based on pre TG-43 prescription dose of 160 Gy indicate a steep 

dependence of clinical outcome with dose in the range of 100 to 160 Gy.[5] The close 

correlation between D90 and biochemical freedom due to dose response is strong 

justification for improved accuracy in dosimetry.  Postimplant dosimetry may in fact be 

more significant for predicting outcome than the addition of adjuvant therapies, and 

should be a requirement when performing prostate brachytherapy.[13] All of these 

studies strongly support that clinical treatment outcome depends on the dose delivered 

and prostate volume covered. The dose response relationship demonstrated in the 

discussion above indicates dosimetry is of paramount importance.  As it appears that 

postimplant dosimetry can have a profound effect on the reported outcome after implant, 
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all future reporting data of implants should report dosimetry data along with clinical and 

biochemical outcome.[15] 

1.5 Postimplant Dosimetry Uncertainty 

A recent survey in the U.S. for prostate brachytherapy revealed alarming variance 

in the pattern of practice in physics and dosimetry, particularly in regard to dose 

calculation and the time and method of postimplant imaging.[19] Some sources of 

dosimetric difficulties and uncertainties discussed here are the dosimetric protocol, target 

definition based on CT, seed position and orientation, post implant edema, physical seed 

characteristics, and tissue heterogeneity. 

Frequently, the treatment planning software is also used for the post-implant 

analysis.  During the pre-implant ultrasound volume study, a series of transverse 

ultrasound images are superimposed with a grid for treatment planning.  A commercial 

treatment planning system is then used to generate the 3D dose distribution to the target 

drawn on the CT images by the radiation oncologist.  A major problem with permanent 

seed implants is the usual disagreement between the pre-implant and post-implant dose 

distribution.[20] Interstitial brachytherapy treatment planning systems often use a one-

dimensional point source approximation for dose rate distribution calculations.[21] Ling 

discussed the dosimetric effects of anisotropy for I-125 and found large differences in the 

dose distribution between the anisotropy function formalism and the point source 

approximation widely used at present.[22] Treatment planning systems also line up seeds 

in the same plane on grids, which never occurs in practice.  Different types of seed 

distributions are in current use and a consensus on the optimal distribution still does not 

exist.[2] 
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Tools currently available for brachytherapy dosimetry include the Sievert integral, 

convolution methods, determinate methods, and the method given in TG-43/TG-43U1.  

Because the dose distribution around I-125 and Pd-103 sources is not isotropic, simple 

analytical methods of dose calculation, such as the Sievert integral, are not suitable for 

these sources due to the complexity of source construction, filtration, and low energy of 

the emitted radiation.[20] Monte Carlo simulations have shown that beyond the end of 

the active source region, the Sievert approach introduces significant errors, and 

practically breaks down in extreme oblique directions.[23] Although the Sievert model 

accurately models the dose rate distribution near the transverse axis, errors in 

reconstructing the dose distribution near the longitudinal axis (where the oblique 

filtration effects are important) as large as 20-40% have been reported.[24] Clearly one 

must proceed cautiously in applying the Sievert model to lower-energy sources.[1]  

The TG-43 formalism is based on geometry factors, anisotropy factors, and radial 

dose functions derived with Monte Carlo calculations and experimental measurements.   

The dose rate distributions endorsed by the TG-43 protocol can result in differences of up 

to 17% in the actual dose delivered to a target volume.[8] The preferred current 

dosimetry method is guided by the recently updated TG-43U1 formalism. This requires 

localization of each source consisting of the position and orientation of each seed, 

discussed in the next section.  

The necessary steps in performing a CT based dose analysis are: 

1. Outline the prostate volume for dosimetric evaluation on each CT image; 

2. Localization of each seed; 
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3. Calculation of the dose to each point in a 3D matrix of grid points that includes 

the prostate; 

4. Generation of isodose curves that can be superimposed on each CT image; 

5. Generation of a dose volume histogram (DVH) for the prostate and other critical 

structures.[2] 

The three main factors that contribute to dosimetric uncertainties are CT target 

volume definition, seed displacement, and prostate post-implant edema.  A major 

problem is defining the prostate volume accurately on CT images.  The gland is defined 

as prostate without margin on the CT images.  Dosimetric analysis is sensitively 

dependent on this difficult task of defining the target volume on CT images.  On the basis 

of the delineation of the prostate and nearby structures and the location of the sources, 

isodose distributions can be calculated and DVH created.[11] Clearly, the determination 

of the dose to the prostate from a post-implant CT scan is non-trivial.[2] While the 

urethra and rectum can be identified with CT, several studies have noted that 

discrepancies in prostate volume due to prostate edema, along with poor imaging 

techniques, are limiting factors for evaluating implant dosimetry.[13] There is 

considerable research into mapping of the prostate or seed localization utilizing other 

imaging modalities; however, until these are developed further, CT scans are the 

preferred evaluation method despite difficulty and bias. 

1.6 Seed Position and Orientation Factors 

The three factors considered here are seed localization, seed displacement, and 

inter-seed effects.  Source localization is the determination of the three-dimensional 

coordinates and the orientation of each source relative to the patient anatomy.[1] 
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Localizing seeds is time consuming and difficult due to a seed shadowing effect caused 

by the radio-opaque marker, which incidentally is contained in the seed precisely for 

localization.  To use the general TG-43 equation rigorously for an implant, the seed 

orientation must be known and fixed.[20] The AAPM TG-43 report contains extensive 

tabulation of the anisotropy functions for I-125 and Pd-103 single seeds, but for any 

given case it is impossible to predict the extent and direction of splaying that will 

occur.[2] Use of the anisotropy function formalism in post-implant dosimetry is 

technically more difficult than in planning because the orientation of each seed must be 

determined by locating the ends of the seeds.[2] CT based source localization and 

dosimetry is the method of choice because there is no film to film matching, and cross 

sectional isodose lines can be directly superimposed on the target volume and 

surrounding anatomy.[1, 6]  

Implants of the prostate, which involve a large number of poorly visualized seeds 

in a small volume, represent one of the more difficult clinical examples of seed location 

reconstruction.[25] Brachytherapy seed reconstruction techniques from projection 

radiographs were actively developed in the early 1980’s when interstitial implants were 

becoming widespread.[26] Historic approaches all required at least two different 

radiographic images from different perspectives such as two isocentric orthogonal films, 

two “stereo-shifted” films less than 90 degrees, or even three film techniques.  The 

problem with radiographs is the area around the prostate is soft tissue, so the target is not 

readily identifiable; there is no way to correlate sources and dose distribution with target 

volume.  Even though older two film techniques such as shifted pair or orthogonal pair 

took about 2 to 3 hours of detailed study, they frequently could not match all seeds.[25] A 
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few reconstruction algorithms address seed reconstruction from incomplete data sets[26, 

27] but other projection x-ray based seed reconstruction algorithms[25, 28-33] do not 

address the issue of undetected seeds.   

One significant limitation of the present reconstruction algorithms is their 

inability to reconstruct from an incomplete data set.  Current methods require that all the 

seeds must be identified in each of the 2D projection data in order to reconstruct 100% of 

the implanted seeds.  In practice this is difficult due to the large number of heavily 

clustered and overlapping seeds.  These superimposed seeds are difficult or impossible to 

detect resulting in incomplete localization.[26] Narayanan reported that the problem of 

undetected seeds occurs in over 50% of implant cases.[27] Current CT based dosimetry 

utilizes a seed location reconstruction method of seed sorting based on nearest 

neighbor.[13] With current use of CT scans for postimplant analysis with a slice 

thickness of 3.27 mm, seeds that are 4.5-5.0 mm long will be located on multiple slices 

making the precise localization especially difficult in the z direction, with added error due 

to the arbitrary assignment of seeds to a particular CT slice.  In heavy seed clusters, 

algorithms may struggle to uniquely identify all seeds. Seed redundancy algorithms are 

helpful in reducing the seeds to the number actually implanted using distance-based 

redundancy likelihood analysis.[2] A human dosimetrist can search for undetected seeds, 

but in some cases even with human intervention it is impossible to locate all the seeds.  

The exact number of seeds is required due to seed migration.[6] 

The planned dose can rarely be achieved due to seed placement errors inherent in 

the procedure.[34] Seed displacement has been well documented and refers to the 

deviation in the positions of the implanted seed from the planned locations.[10, 34, 35] 
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Seed displacement is typically caused by seed migration, compression of target volume 

with needle insertion, and deviations in path of needle due to the steering effect of the 

beveled tip.  Seed displacement is classified in terms of needle placement error, source-

to-source spacing variability, and seed splaying.[10] These errors arise because of 

problems associated with reproducible patient positioning from volume study to 

operating room, prostate shift during implant even with stabilizing needles, and changing 

prostate volume particularly when the patient is undergoing hormone therapy.[2] The 

average distance between planned and observed seed locations was found to be about 

0.55 cm; randomly displaced seeds with a standard deviation of 0.4 cm resulted in 

decrease of dose up to 30%.[34] In most cases, the seeds appear to be displaced randomly 

from their intended locations by a few millimeters, although some seeds are displaced by 

as much as 1 cm.  When the seeds were systematically displaced from their intended 

locations so that the seed distribution resembled that of an actual implant, the peripheral 

dose often decreased by 25% or more.[34] 

Mutual attenuation by neighboring seeds has been reported to be significant.[36, 

37] Inter-seed effects were quantified by Burns and Raeside with Monte Carlo 

calculations, and demonstrated experimentally by Meigooni.  Burns and Raeside 

estimated maximum perturbation of 9.8% using Monte Carlo simulations of 32 seeds at 

0.5 cm separation with the largest dosimetry errors occurring within the seed array. [36] 

A quantitative evaluation of the outcome of interstitial brachytherapy depends on an 

accurate determination of the dose distribution throughout the irradiated volume, but dose 

calculation in multi-seed implants are done by adding the contribution of each individual 

seed and assuming that radiation from each seed is unaffected by the presence of other 
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seeds.[37] In a typical multi-seed implant, many seeds may be in close proximity to each 

other causing seed to seed interference with the magnitude of effect depending on 

unavailable information such as the relative orientation of each seed.  Meigooni 

performed Solid Water™ measurements and Monte Carlo calculations for dose 

perturbation and found a mean reduction in peripheral dose of 6% and a maximum that 

was 12% lower than that obtained by summing single seed sources for I-125.[37] The 

clinical significance of inter-seed effect depends on the details of implant construction, 

which is highly dependent on implant size and geometry with dose discrepancies 

identified from 10-12%.[36] The magnitude of the clinical significance of the 

perturbation effect due to inter-seed effects depends on the location of the dose 

calculation point and the details of implant configuration which is highly patient specific 

post-implant.[37] The implant details of seed location and orientation are unlikely to be 

found using CT images.  It is unreasonable to do a Monte Carlo study for each implant 

even if the information was available due to the complex source description and 

computational time involved.[36] In computer dose calculations for interstitial implants, 

inter-seed effects are ignored because there is insufficient data to recommend 

incorporating inter-seed effects into treatment planning systems.[1] The overall 

dosimetric impact of inter-seed effect in prostate implants is unclear. 

1.7 Post Implant Edema 

There is an ongoing debate about the optimum timing of post-implant analysis.  

The optimal time for obtaining the CT scan has not been established, and it will be 

different for I-125 and Pd-103.  This is because the dose will be delivered sooner with 

Pd-103 due to its shorter half-life.  Even though the impact of edema on the post-implant 
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dosimetry is not well understood, two factors that contribute are the margin used in 

planning the implant, and the magnitude of the edema.[2] Due to seed placement 

uncertainties that are inherent to the implant procedure, the percentage of the prostate 

volume that is covered by the prescribed dose is always less than planned.  It is often 

necessary to “over plan” the implant to achieve the prescribed dose coverage.  Pushing 

the prescribed dose lines several millimeters outside the prostate is achieved in a variety 

of ways.  This is commonly done by using a planning volume larger than the prostate, or 

increasing the total activity implanted by about 15% by either increasing the number of 

seeds or seed strength.[2] Prostate edema and the timing of establishing the dose-volume 

relationship can significantly vary dose by greater than 10%.  Conventional post-implant 

dosimetry does not take into account the effect of edema; the seeds locations in post 

implantation are assumed to be stationary throughout the entire treatment course of 

implant.[38] A systematic study of prostate edema reported that the prostate target 

volume measured on post-implant CT images (one day post-implant) had increased by a 

factor ranging from 1.3 to 2.0 from that measured on the pre-implant CT images.[39] 

They also found that edema caused by surgical trauma resolved exponentially with time.  

Consequently, the dose will be underestimated if the seed locations are measured shortly 

after implantation, or overestimated if the seed locations are determined long after 

implantation.  The time it took to reduce the edema volume increase by one-half of its 

initial value varied from 4 to 25 days with an average of 10 days.[38] The largest shift in 

prostate volume and seed location occurs during a significant portion of the treatment 

course of implant because more of the dose is delivered earlier.  For example, a random 

deviation of 3 mm in the implanted seed locations, without edema, would reduce the 
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planned minimum target dose by about 10% for I-125 and 15% for Pd-103.[10, 40] Chen 

found a typical dosimetry error of 5% for I-125 and 15% for Pd-103, but for 100% edema 

of 25 day half-life the overestimation due to edema is 19% for I-125 and 50% for Pd-

103.[38] The shorter half-life of Pd-103 causes increased magnitude of overestimation at 

a much faster rate.  Current literature suggests that imaging studies for dosimetric 

evaluation are ideally obtained 2-3 weeks post-implant for Pd-103 and 4 weeks post 

implant for I-125.  An automated dosimetry method, which we are proposing, could 

reasonably allow multiple scans taken as the seeds move and the prostate changes shape.  

This could provide a more accurate post-implant dosimetric analysis, as well as provide a 

method of clarifying the clinical consequences of edema, thus improving our 

understanding of its impact on treatment planning, effectiveness, and morbidity. 

1.8 Physical Seed Characteristics Affecting Dosimetry 

Permanent interstitial brachytherapy seed characteristics have a direct influence 

on implant dosimetry.  The accuracy of dose calculations for brachytherapy implants is, 

of course, dependent on the accuracy of the dosimetric data for the source used.[1] These 

low energy photon emitting sources are particularly sensitive to self-absorption effects 

due to source geometry, encapsulation, and internal structure.[2] I-125 and Pd-103 are 

titanium encapsulated sealed seed sources that have comparable energy, dimensions, and 

distribution.  Typically seeds are 4.5-5.0 mm long and approximately 0.8 mm in outer 

diameter.  Both I-125 and Pd-103 decay by electron capture.[41] 

I-125 decays with the emission of photons of 27.4 keV (1.15 

photons/disintegration (p/dis)), 31.4 keV (0.25 p/dis) and 35.5 keV (0.067 p/dis).  If the I-

125 is in the form of silver iodine rods then Ag fluorescence x-rays with energies of 22.1 
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keV (0.15 p/dis) and 25.5 keV (0.04 p/dis) are emitted.  The average energy for all I-125 

emissions is approximately 27.4 keV with a corresponding half value layer in lead of 

0.025 mm and self-absorption of approximately 37.5%.  The half-life of I-125 is 59.4 

days resulting in 90% of the dose being delivered in 197 days.  Because of the relatively 

low energy of I-125 photons, significant absorption occurs in the titanium encapsulation 

of interstitial seeds, especially the end welds, and in any x-ray marker contained in the 

capsule.[8] For I-125 seeds, a 10%-30% difference in dose rate was observed very close 

to the source in the longitudinal direction due to encapsulation.[42-44] 

Pd-103 decays with the emission of photons of 20.1 keV (0.656 p/dis) and 23.0 

keV (0.125 p/dis).  Pd-103 has a half value layer in lead of 0.008 mm and self-absorption 

of approximately 54%.  The half-life of Pd-103 is 16.97 days resulting in 90% of the dose 

being delivered in 56 days. 

Other factors known to contribute to problems with seed sources are the source 

wall filtration, self-absorption, and wall thickness that creates an altered energy spectrum, 

which becomes more severe when the effects of oblique filtration are considered.[23] 

These factors can be particularly sensitive to the quality of the manufacturing process 

during seed fabrication.[2] Monte Carlo calculations show a change in dose ratios of up 

to 21% caused by deviation in seed end-weld thickness alone.[45] 

Due to seed materials, shape, and construction, the dose distribution is not 

isotropic, which is considered a serious problem.[20] Encapsulation material and radio-

opaque markers of high atomic number and density efficiently absorb low energy x-rays 

causing dose perturbations.  Because the seed has a metallic titanium shell with a 

relatively high electron density, it heavily absorbs low energy photons; this forms a 
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shadow, heavily affecting photon flux and absorbed dose distribution.  The presence of 

strong photon absorbers distorts the dose distribution significantly, acknowledged in TG-

64, Burns and Raeside, and Meigooni.[2, 37, 46] Single seeds, especially those with 

average emission energy below 80 keV, present a marked anisotropy in dose distribution 

around the longitudinal axis.[21] Most treatment planning computers disregard the highly 

anisotropic dose distribution by failing to account for individual source anisotropy 

altogether.  As stated above, most treatment planning computers treat seeds as point 

sources producing spherically rather than cylindrically symmetric dose distributions.[1] 

1.9 Tissue Heterogeneity 

Calcified deposits in the prostate are the major cause of tissue heterogeneity in a 

small number of patients.  The inclusion of these small calcifications (Z = 20) in muscle 

tissue (Z = 7.6) can affect the absorbed dose distribution in the low energy range of 

therapy radionuclides where photoelectric effect is the dominant absorption process.  As 

a first approximation, the ratio of mass energy attenuation coefficients of calcium to 

muscle is 23-24 at 20-30 keV.[2] Other than Monte Carlo simulation, no practical dose 

calculation algorithm exists for accurately modeling bounded heterogeneity effects.[1] At 

present, there is no clinical study published to gauge the impact of tissue heterogeneity. 

As yet, there is no other model that can be used to calculate the dose to a heterogeneous 

medium, other than Monte Carlo simulation.[1] 

1.10 Conclusion 

Nath et al. identified an overall dose rate uncertainty estimate for the TG-43 

protocol of 10%, but also identified the maximum error as 17%.[8] The development of 

this PET based dosimetric approach could allow quantification of certain errors arising 
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from dosimetric concerns.  While we have identified numerous sources of uncertainty 

and difficulties associated with prostate brachytherapy dosimetry, there is no available 

estimate of the propagation of error that addresses all of these concerns.  The numerous 

difficulties and technical challenges notwithstanding, the standard for seed implant 

quality evaluation is quantitative CT-based dosimetric evaluation.[2]  

Sajo and Williams have proposed a new method for determining the three-

dimensional dose distribution due to multiple sources without manual seed 

localization.[3] This work investigates the feasibility of implementing several aspects of 

this method and its potential accuracy and limitations when using current PET/CT 

technology.  Consistency in dose specification, prescription, and reporting is an important 

step towards establishing a uniform standard of practice.[2] Investigators would benefit 

from a uniform standard of post-implant dosimetry and dose reporting for feedback that 

would consistently reflect tumor control and morbidity results.  An automated standard 

method could also clarify the effect of prostate implantation volume change over time on 

dose distribution.  In short, a more complete understanding of this issue will have a 

strong impact on optimal dosimetric planning and post-implant analysis so that the 

therapy potential of interstitial prostate brachytherapy is maximized and consistently 

realized. 
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CHAPTER 2 

PET/CT IMAGING  

2.1 Introduction 

Since its introduction in 1998, dual modality PET/CT imaging has received great 

attention in the medical community.[47] Combining PET and CT has a growing emphasis 

for cancer diagnosis, treatment planning, and treatment simulation.  This new dual 

modality imaging redefined patient management.  The ability to acquire anatomical 

imaging over extended ranges at reasonable patient exposure levels underlies the main 

concept of combined PET/CT imaging, which is to supplement metabolic information 

from a whole-body PET study with detailed information on the corresponding patient 

anatomy for improved diagnostic accuracy.[47] Localized annihilation events create 511-

keV photons that are detected for imaging; however, these photons also deliver dose to 

the body.  Because the therapy dose can be theoretically calculated from PET annihilation 

photons, this investigation focuses on determining whether the measured dose 

distribution based on PET image data is comparable to the dose deposition due to an ideal 

localized positron source.[3] Because many cancer centers now have these scanners, if 

the PET image data could be used to calculate the positron dose distribution then a 

significant step toward the realization of the ultimate goal for this method could be 

achieved—clinical implementation of PET/CT measurement to determine the interstitial 

brachytherapy dose distribution. 

A series of measurements were performed in which simulated brachytherapy 

seeds containing a small amount of positron emitter were imaged in an acrylic prostate 

phantom using a General Electric Discovery ST PET/CT scanner (Figure 1).  The 
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acquired image was, in turn, used to perform dose deposition calculations.  The results of 

these calculations were compared to dose calculations using theoretical idealized seed 

sources.  Calculations, detailed in Chapter 3, were done using MCNP5. 

 

 

Figure 1. General Electric Discovery ST PET/CT scanner. 

 

2.2 PET General Principles 

Positron emission tomography detects positron annihilation photons from a 

radiopharmaceutical within the patient.  The emitted positron travels a small distance 

before annihilation, creating two 511 keV photons traveling in opposite directions.  A 

ring of detectors surrounding the patient registers the annihilation photons 

simultaneously, providing a mechanism for localizing the decay event.  The system 

assigns a line of response (LOR) to coincident events corresponding to a straight line 
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joining the photons’ detections.[48] The positron has a limited travel range that depends 

on the energy and traversed medium.  The operator can select scan parameters including 

the acquisition mode and image reconstruction preferences.  A whole body survey is the 

standard mode of acquisition therefore most, if not all, PET/CT imaging protocols are 

based on standard whole-body PET acquisition protocols involving the transmission scan 

followed by the emission scan from the same axial image range.[47] CT scan images are 

used for anatomical reference for PET images as well as for the attenuation correction of 

PET data.  The routine use of CT-based attenuation correction and user preferences for 

the quality and type of CT examination have led to the introduction of different PET/CT 

scanning protocols.[47] 

2.3 2D Acquisition Versus 3D Acquisition 

PET images can be acquired on the Discovery ST in either 2D or 3D mode; 

however, a general rule of thumb for PET scanning is if there are sufficient counts to 

perform a study in 2D mode then the study should be performed in 2D mode.[49] With 

2D acquisition the tungsten septa reduces events from out-of-slice activity whereas in 3D 

acquisition the septa are retracted which greatly increases detector field of view.[48] 2D 

acquisition uses a septa collimator that reduces scatter, limits the field of view, and 

restricts the axial field of view which reduces the number of oblique coincidences.  A 

direct LOR lies within the same transaxial plane where and oblique LOR does not.  3D 

acquisition is done with the septa retracted, increasing detector field of view with a 

tremendous increase in total counts due to increase in primary events, scatter and noise 

from a longer axial field of view.  Acquiring in 2D mode can be thought of as “slice-by-

slice”, whereas 3D mode is “volume-by-volume.”  3D acquisition causes increased 
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contribution from random events and scatter due to the larger axial detector range 

measuring both direct and oblique LORs.  Random events are photons from separate 

annihilation events detected within the coincidence time window.  For a given total count 

rate, the fraction of random events recorded will be greater when scanning in 3D 

mode.[50] The Discovery ST at MBPCC, which was used for our experiments, utilizes 

bismuth germinate (BGO) detectors with a poorer energy resolution and a larger 

coincidence window (12 ns, 375-650 keV) than newer gadolinium orthosilicate (GSO, 8 

ns, 435-590 keV) or lutetium oxyorthosilicate (LSO, 6 ns, 375-650 keV) detectors.[48] 

Scatter coincidences occur when a scattered photon results in an incorrect LOR.  

Annihilation photons in homogeneous media principally undergo Compton scattering, 

resulting in lower energy photons proportional to the new trajectory.  In 3D mode the 

number of scattered events approaches half of all recorded events, therefore 3D scatter 

correction must be applied for proper data quantification.[50] Image blurring caused by 

scatter events may lead to important quantification errors.[48] The scatter correction 

algorithm relies on the estimated emission and attenuation images.[49] Metal implants 

cause beam hardening and photon starvation, creating artifacts.  If the CT images have 

metal artifacts, then the scatter correction may be erroneous.[51]  

2.4 Attenuation Correction 

Factors known to correct image and quantification discrepancies are software 

compensation for dead time loses, random coincidences, scatter, normalization, and 

geometry, but by far the most important effect that can affect both the visual quality and 

the quantitative accuracy of PET data is photon attenuation.[52] PET images are 

degraded by photon attenuation due to interactions occurring along the path from the 
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source to the detector.[48] Accounting for these photon interactions are necessary for the 

quantitative integrity of the PET data.  CT attenuation information is transformed to a 

511 keV attenuation map used for correcting PET emission data.[53, 54] For the 

Discovery ST at MBPCC, measured attenuation correction is based entirely on CT with 

no restriction on the CT kilovolt setting to transform CT numbers to PET attenuation 

factors.[55] It is not uncommon for oncology patients to have artificial metal implants 

such as chemotherapy ports, metal spinal region braces, artificial joints, or dental 

fillings.[47] Metal seeds have significantly higher attenuation than soft tissue.  High-

atomic number materials could induce artifacts in the CT attenuation corrected PET 

image.[56] The higher atomic number materials result in an increased fraction of 

photoelectric absorption at diagnostic CT energies whereas PET attenuation in most 

materials occurs at 511 keV is dominated by Compton scattering.[54] The observed 

effect of overcorrecting for attenuation in PET images is an overestimation of activity 

concentration.[56] However, one study found overestimation of activity caused by the 

attenuation correction of a CT contrast agent that was likely to produce the most severe 

artifact introduced only a small effect that was below the reproducibility of the PET.[54] 

The methods of CT-based attenuation correction are well understood, and several 

modifications to the inherent scaling models account for presence of high-density 

materials on CT images used for attenuation correction.[47] No metal artifacts were 

observed when comparing the corresponding non-attenuation corrected PET emission 

images used for data in this study. 
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2.5 Discovery ST PET/CT Scanner 

The Discovery ST scanner is unique in that the PET component has been newly 

designed as an integrated PET/CT scanner.[55] The Discovery ST combines a high speed 

multi-slice helical CT scanner with a full ring PET system that consists of 10,080 BGO 

crystals arranged in 24 rings of 420 crystals each.  The crystal dimensions are 6.3x6.3x30 

mm3 arranged in 6x6 blocks coupled to a single photomultiplier tube with four anodes.  

The 24 rings of the PET system allows 47 images (24 direct and 23 cross planes) to be 

obtained, spaced at 3.27 mm, and covering an axial field of view of 15.7 cm.[57] The 

transaxial field of view is 70 cm.  The PET scanner is equipped with 0.8 mm thick and 54 

mm long retractable tungsten septa to allow 2D and 3D imaging.  The septa, which define 

the image planes in the 2D scanning configuration, are retracted from the scanner field of 

view to allow fully 3D acquisition.[57] The 2D mode is operated with an axial 

acceptance of  5 crystal rings, whereas the 3D mode accepts axial combinations 

between any of 24 rings.[55] For both acquisition modes, the low-energy and high-energy 

thresholds are set at 375 keV and 650 keV, respectively, and the coincidence time 

window is set to 11.7 ns.  A Ge-68 pin source located in the couch bed is used for PET 

calibration and daily QA. 

±

Image reconstruction in 2D mode can be performed with either filtered 

backprojection (FBP) or ordered-subset expectation-maximization (OSEM), whereas the 

3D image reconstruction supports both 3D reprojection and Fourier rebinning (FORE) 

followed by either FBP or a weighted least-squares OSEM iterative reconstruction 

(WLS).[55] Both 2D and 3D iterative reconstructions include attenuation compensation.  

Scatter correction is calculated with the Bergstrom convolution in 2D and an angle model 
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based technique in 3D.  Randoms correction is applied with delayed-event coincidence 

measurements or from an estimate of randoms generated from the crystal singles 

rates.[55]  

2.6 Simulated Brachytherapy Seed Preparation 

Simulated brachytherapy seeds were constructed using stainless steel needles 

(Figure 2).  The eighteen-gauge needle (nominal outer diameter—1.27 mm, nominal 

inner diameter—0.838 mm, nominal wall thickness—0.203 mm) was filled with a small 

amount of fluorine-18 (F-18).  Seeds were prepared by crimping one needle end before 

inserting a smaller needle to deposit the FDG solution from the bottom up, displacing air.   

 

 

Figure 2. Simulated brachytherapy seeds. 

 

Once the solution was visible at the needle top, another crimp sealed the seed top at 

approximately 5 mm long.  The needle was snipped at the crimps to complete seed 
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construction.  The seed was then assayed in the PET hot lab well counter.  The activity 

and time were recorded for each seed before it was placed in a uniquely numbered tray 

slot (Figure 3).  After seed construction, all tools were surveyed for potential 

contamination.  The metal snips exhibited over 500 counts per minute. The snips and 

phantom, containing the simulated seeds, were stored in the hot lab after imaging for the 

F-18 to decay. 

 

  

Figure 3. Simulated brachytherapy seed preparation. 

 

2.7 Characteristics of the F-18 Positron Source 

The positron emitter used for this study was F-18.  F-18 has a half-life of 1.83 

hours (110 minutes), a maximum energy of 0.645 MeV, and a branching ratio of 0.967.  

F-18 source activity multiplied by the branching ratio yields the positron activity.  The 
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positron range from the original emission point to the annihilation depends on its kinetic 

energy and on the atomic number of traversed material.[48] PET resolution is inherently 

limited by the finite positron range and the fact that the angular separation of two 

annihilation photons is not quite 180°.[58] In fact, the electron-positron center of mass 

cannot be at rest; for this reason, the two 511 keV photons will be emitted with a relative 

angle within 0.25° of 180°, determined by mass and energy conservation.[48]   

With a nominal wall thickness of 0.203 mm the probability of an F-18 positron 

emerging from the stainless steel needle is very small.  In water, the positrons emitted by 

F-18 nuclei (maximum energy of 0.645 MeV) have a range less than one millimeter.  The 

contribution to the final spatial resolution is assessed as FWHM of the count distribution 

due to positron range effect, only resulting in a minimal value of 0.2 mm for F-18 in 

tissue.[48] The positron decay energy spectrum is similar to that of electrons with an 

average energy of approximately one third of the maximum energy, with relatively few 

positrons emitted with close to the maximum energy.  Charged particles slow down as 

they deflect and lose energy.  Effective path lengths are derived based on the continuous 

slowing down approximation (CSDA).[59] The values for CSDA range and material 

density were obtained from ICRU Report 37 “Stopping Powers for Electrons and 

Positrons.”[60] There was no data available for positrons in stainless steel so the electron 

data for iron was utilized.  There are differences arising between positron and electron 

energy transfers because an electron can lose at most half its energy in a single collision, 

but a positron can lose its entire energy.  These differences are derived in terms of a 

positron to electron range ratio determined for a few materials.  For this calculation the 

closest material to iron (Z = 26) with available ratio data was copper (Z = 29).  Once a 
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maximum energy positron traverses the seed wall, its residual energy gives rise to a range 

of approximately 0.03 mm in water.  Therefore the positron range blurring effect due to 

the positrons originating inside the seed should have a negligible range outside the seed.  

Clearly almost all annihilations will take place within the F-18 solution or the seed 

encapsulation. 

2.8 Acrylic Prostate Phantom 

The measurements were performed in a cube-shaped acrylic (C5H8O2) prostate 

phantom containing the simulated brachytherapy seeds described above.  In comparison 

to a water phantom, the dosimetry of brachytherapy implants can be performed more 

accurately in solid phantoms because a precise position of detectors and sources can be 

easily accomplished.[37] The phantom is two-piece construction machined with four sets 

of eight holes at constant and graduated distances on one piece (Figure 4 and Figure 5). 

 

Figure 4. Acrylic prostate phantom. 
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All holes are the same depth and the longitudinal axes of the seeds are parallel.  Holes 

without seeds were filled with water prior to imaging. 

 

 

Figure 5. Acrylic prostate phantom on Discovery ST scanner bed. 

 

2.9 Experimental Measurements 

The PET/CT measurement started with a scout scan consisting of an x-ray image 

overview of the phantom (Figure 6).  The resulting scan was displayed for the operator to 

define the axial examination range.  The axial extent of the CT and PET portions of the 

combined scans were matched to ensure fully quantitative attenuation and scatter 

correction of the emission data.[47] For the 9 cm long phantom the scanner imposed the 

minimum axial distance of 15.7 cm with collection of 47 images each with a slice 

thickness of 3.27 mm.  Following the definition of imaging range, the phantom moved  
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Figure 6. Phantom aligned with positioning lasers prior to image acquisition. 

 

automatically into the CT field of view for the transmission scan.  After completing the 

CT scan the phantom advanced to the rear of the combined gantry into the PET field of 

view for emission acquisition.  Upon completion of the scans and reconstruction, PET 

and CT images were transferred to compact disk media; the images are stored in DICOM 

(Digital Imaging and Communications in Medicine) format.  The stored images consisted 

of a CT scan set and both attenuation corrected and non-attenuation corrected PET scan 

sets for each slice. 

In this study we collected two different data sets.  There are some general points 

that apply to all scans.  The phantom orientation was the same for all images.  Image 

pixel size depends on the field of view and reconstruction matrix size.  The two sets of 

scans were acquired with consistent Z placement for all scans by aligning the laser with 
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the joining plane of the two phantom pieces.  However, there was some lateral shift 

within the first set of scans that was corrected by shifting the data set by the distance 

confirmed with seed locations in corresponding CT scans.  For the second scan set 

phantom alignment marks insured consistent alignment in all three directions. 

2.10 Scan Set One—Six Acquisitions 

Three seeds were constructed for the first scan set.  They were designated as Seed 

One, Seed Two, and Seed Three, with activities of 9.0, 3.0, and 6.0 µCi respectively.  The 

first scan set consisted of three different seed configurations detailed in Table 1. 

 

Table 1. Three seed arrangement composition and seed locations used for scans. 

Seed 
Configuration 

Seed One 
X = 0 mm, Y = 0 mm 

Seed Two 
X = 5 mm, Y = 0 mm 

Seed Three 
X = 30 mm, Y = -15 mm 

One Yes No No 
Two Yes Yes No 

Three Yes Yes Yes 
 

For all three seed configurations in scan set one, two-dimensional and three-

dimensional acquisitions were obtained with default image reconstruction, for a total of 

six acquisitions.  The 2-D and 3-D image acquisitions were conducted consecutively for 

each seed configuration without disturbing the phantom.  Table 2 summarizes the 

acquisition parameters for the six acquisitions of scan set one.  Figure 7 shows the seed 

arrangements. 

Table 2. Acquisition parameters for Scan Set One. 

Acquisition 1 
Seed Configuration One 
Protocol  PET.CT 2D Body. FEET .In 
Attenuation Correction 
CT Scan  

CT AC FEET IN--140 kvp, 150 ma, 1121ms, 50 cm FOV, 
pixel size 0.977 mm, matrix size 512x512 

 (table continued) 
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PET Series Description  PET SLICES IR MAC 
2D Acquisition 60 cm FOV, pixel size 4.69 mm, matrix size 128x128 
Reconstruction Method  OSEM 
Acquisition 2 
Seed Configuration One 
Protocol  PET.CT 2D Body. FEET .In 
Attenuation Correction 
CT Scan 

CT AC FEET IN--140 kvp, 150 ma, 1121ms, 50 cm FOV, 
pixel size 0.977 mm, matrix size 512x512 

PET Series Description  PET SLICES 3D MAC 
3D Acquisition 60 cm FOV, pixel size 2.34 mm, matrix size 256x256 
Reconstruction Method  3D FORE IR 
Acquisition 3 
Seed Configuration Two 
Protocol  PET.CT 2D Body. FEET .In 
Attenuation Correction 
CT Scan 

CT AC FEET IN--140 kvp, 100 ma, 1018ms, 50 cm FOV, 
pixel size 0.977 mm, matrix size 512x512 

PET Series Description  PET SLICES IR MAC 
2D Acquisition 60 cm FOV, pixel size 4.69 mm, matrix size 128x128 
Reconstruction Method  OSEM 
Acquisition 4 
Seed Configuration Two 
Protocol  PET.CT 2D Body. FEET .In 
Attenuation Correction 
CT Scan 

CT AC FEET IN--140 kvp, 100 ma, 1018ms, 50 cm FOV, 
pixel size 0.977 mm, matrix size 512x512 

PET Series Description  PET SLICES 3D AC 
3D Acquisition 60 cm FOV, pixel size 2.34 mm, matrix size 256x256 
Reconstruction Method  3D FORE IR 
Acquisition 5 
Seed Configuration Three 
Protocol  PET.CT 2D Body. FEET .In 
Attenuation Correction 
CT Scan 

CT AC FEET IN--140 kvp, 100 ma, 1018ms, 50 cm FOV, 
pixel size 0.977 mm, matrix size 512x512 

PET Series Description  PET SLICES IR MAC 
2D Acquisition 60 cm FOV, pixel size 4.69 mm, matrix size 128x128 
Reconstruction Method  OSEM 
Acquisition 6 
Seed Configuration Three 
Protocol  PET.CT 2D Body. FEET .In 
Attenuation Correction 
CT Scan 

CT AC FEET IN--140 kvp, 100 ma, 1018ms, 50 cm FOV, 
pixel size 0.977 mm, matrix size 512x512 

PET Series Description  PET SLICES 3D MAC 
3D Acquisition 60 cm FOV, pixel size 2.34 mm, matrix size 256x256 
Reconstruction Method  3D FORE IR 
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Figure 7. Scan Set One CT (top) and PET (bottom) images located at Z = 0 (ezDICOM 
viewer). 

 

2.11 Scan Set Two—Four Acquisitions 

Three seeds were constructed for the second scan set.  They were designated as 

Seed Four, Seed Five and Seed Six with activities of 4.6, 4.9, and 4.5 µCi respectively.  

The second scan set consisted of the same three different seed configurations in scan set 

one listed in Table 1.  For all three seed configurations of the second scan set, 2D whole 

body protocol were acquired.  In addition, for seed configuration one, a 2D brain or heart 

protocol was used.  Each of these four acquisitions was reconstructed with both 128x128 

and 256x256 matrix sizes for a total of eight reconstructed data sets from scan set two.  

Table 3 summarizes the acquisition parameters for scan set two. 
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Table 3. Acquisition parameters for Scan Set Two 

Acquisition 1 
Seed Configuration One 
Protocol  PET.CT 2D Body. FEET .In 
Attenuation Correction 
CT Scan 

CT AC FEET IN--140 kvp, 100 ma, 1018ms, 50 cm FOV, 
pixel size 0.977 mm, matrix size 512x512 

PET Series Description  PET SLICES IR MAC 
2D Acquisition 60 cm FOV, pixel size 4.69 mm, matrix size 128x128 
Alternate Reconstruction Pixel size 2.34 mm, matrix size 256x256 
Reconstruction Method  OSEM 
Acquisition 2 
Seed Configuration Two 
Protocol  PET.CT 2D Body. FEET .In 
Attenuation Correction 
CT Scan 

CT AC FEET IN--140 kvp, 100 ma, 1018ms, 50 cm FOV, 
pixel size 0.977 mm, matrix size 512x512 

PET Series Description  PET SLICES IR MAC 
2D Acquisition 60 cm FOV, pixel size 4.69 mm, matrix size 128x128 
Alternate Reconstruction Pixel size 2.34 mm, matrix size 256x256 
Reconstruction Method  OSEM 
Acquisition 3 
Seed Configuration Three 
Protocol  PET.CT 2D Body. FEET .In 
Attenuation Correction 
CT Scan 

CT AC FEET IN--140 kvp, 100 ma, 1018ms, 50 cm FOV, 
pixel size 0.977 mm, matrix size 512x512 

PET Series Description  PET SLICES IR MAC 
2D Acquisition 60 cm FOV, pixel size 4.69 mm, matrix size 128x128 
Alternate Reconstruction Pixel size 2.34 mm, matrix size 256x256 
Reconstruction Method  OSEM 
Acquisition 4 
Seed Configuration One 
Protocol  2D Brain or Heart 
Attenuation Correction 
CT Scan 

CT AC FEET IN--140 kvp, 100 ma, 1018ms, 50 cm FOV, 
pixel size 0.977 mm, matrix size 512x512 

PET Series Description  PET SLICES IR MAC 
2D Acquisition 60 cm FOV, pixel size 4.69 mm, matrix size 128x128 
Alternate Reconstruction Pixel size 1.17 mm, matrix size 256x256 
Reconstruction Method  OSEM 
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2.12 Extracting Annihilation Event Density From PET DICOM Files 

Three free DICOM readers, Osiris, MRIcro, and ezDICOM were used for viewing 

the DICOM format images.  IDL 5.6 Student Edition (Research Systems, Inc.) and Visual 

Basic 6.0 (Microsoft Corporation) were used to process the PET image data. 

IDL was used to read the pixel data from an image file and multiply each data 

point by the image scale factor to generate a raw output data file.  A Visual Basic 

program was then used to locate within the output data file the pixel with the maximum 

pixel value and to extract sub-sets of pixels based on the location and magnitude of this 

reference point.  The reference element for all studies was the seed located at the 

phantom center.  The single seed in scan set one had the highest activity of the three 

seeds at 9 µCi.  This pixel was easy to locate in the PET data because it had the largest 

value.  A shift in X-Y location of the largest pixel value was noted between the one and 

two seed cases.  Checking the CT scans of each case revealed that the location of the 

reference seed had been shifted between the two acquisitions.  Even though the Z 

alignment was identical for all scans, the phantom was aligned in a slightly different X-Y 

location for these scans.  The magnitude of shift was identified in the CT scan and the 

reference point was shifted to match the MCNP source input locations and corresponding 

raw data probability distributions. 

2.13 Data Reduction for MCNP Input—Pixel Data Significance 

The Sajo and Williams technique links the therapy dose distribution to the dose 

distribution due to the annihilation photons.[3] The goal of this research is to test the 

hypothesis that the scanner output can be utilized to calculate the annihilation dose 

distribution.  While estimated true counts or activity concentration would be logical units 
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for raw scanner output, the actual format isn’t important as long as the relative data is 

intact.  The assumption we are making is that the difference between the raw output data 

and the actual activity concentration is only a scaling factor.  Therefore, the scanner raw 

output data maintains the integrity of the relative activity of each voxel.  A voxel is a 

three-dimensional volume element analogous to a two-dimensional pixel.  The voxel 

volume is determined by the image slice thickness and pixel size.  

The raw GE PET/CT scanner output data is used for MCNP input.  The raw 

output value reported for each voxel is entered into MCNP source input as the relative 

probability of photon emission per voxel.  Because the computational results are 

normalized to one photon source, the results of both the theoretical ideal source 

distribution and the source distribution from the experimentally measured data can be 

directly compared.  Furthermore, at some point in the future when sources of known 

strength are utilized, the activity of those sources can be used with the MCNP calculated 

dose distribution using scanner output for source, normalized to one photon, for mapping 

the actual dose distribution due to the annihilation photons. 

Not all of the raw scanner output data is significant for MCNP input.  PET images 

are formulated with data containing false information due to contributions from intrinsic 

properties such as scatter and noise.  There are also large blocks of the PET data that have 

zero values and clearly all data is not significant for input.  In examining the question of 

what data is significant, results of different input data sets will be compared.  The 

Discovery ST acquires a minimum of forty-seven slices combined with the smallest 

matrix size of 128x128 results in 770,048 voxels.  An initial attempt to analyze all 

available input data resulted in over one million input lines crashing MCNP5.  Two 
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factors were considered for eliminating insignificant input data: the slice scaling factor 

and positron range.  Comparing the scaling factors of adjacent slices revealed that all data 

within three orders of magnitude was within four slices above and four slices below the Z 

= 0 slice.  Nine slices of data, the central one and four from each side, would contain all 

data within three orders of magnitude of the maximum pixel value.  Finally, based on the 

positron range calculation, using five slices of input data includes the voxels that could 

contain the seeds plus a one voxel margin.  Using five slices of data would easily account 

for the maximum positron range.  Both the nine slice dataset and the five slice dataset 

were compared to the theoretical distribution. 
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CHAPTER 3 

MCNP5 COMPUTATIONAL EXPERIMENTS 

3.1 Introduction 

Historically Monte Carlo methods have played an important role in computational 

dosimetry.  MCNP5 (Monte Carlo N-Particle, version 5) is a particle transport computer 

code with powerful three-dimensional combinatorial geometry and source modeling 

capabilities that can be applied to various fields, including medical physics.[62, 63]  

MCNP5 utilizes the frequently updated ENDF/B-VI (Evaluated Nuclear Data File, 

Release B, version VI) cross-section library and models combined neutron, photon, and 

electron transport, including secondary photon and electron/positron creation.  MCNP5 

has been widely validated against experimental measurements and benchmarked using 

other codes, so that its operating parameters and limitations are well understood.[62-64] 

Monte Carlo codes provide a means of constructing an idealized reality for theoretical 

experiments far from the clinical environment.  Although Monte Carlo studies are free 

from experimental artifacts such as positioning uncertainties, energy response 

corrections, and signal-to-noise ratio limitations, such simulations require an accurate and 

complete geometric model of the source, selection of appropriate cross section library, 

and careful selection of dose tallying and variance reduction strategies.[5] MCNP5 has 

been widely used for interstitial brachytherapy dosimetry.[65] For the purpose of this 

study, MCNP5 for WindowsTM was obtained from the Radiation Safety Information 

Computational Center (www-rsicc.ornl.gov) for free; however, there are security 

restrictions on obtaining and using the software package. In this project, MCNP5 was 

utilized for the calculation of energy deposition in tallied voxels due to the 511 keV 
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photons from both the theoretical and measured positron annihilation distributions.  

Because MCNP is a widely known and accepted code, if done correctly the results should 

be considered meaningful and significant.  All calculations were performed on a Pentium 

4 CPU running at 2.80 GHz equipped with 448 MB of RAM.  

3.2 Simulation of Seed Geometry Dose Deposition 

Because the investigator performing Monte Carlo analysis can control many 

features of the transport calculations, it is imperative that the salient details be 

described.[5] In the rest of this chapter the specific features of the MCNP inputs used for 

this study are explained.  Monte Carlo simulation must be used with caution.  The 

accuracy of the estimated energy deposition is highly dependent on the accuracy of the 

source construction and geometry construction.[5] Certain features were used universally 

so these will be explained before moving on to unique input file specific parameters. 

Some general considerations for all MCNP related work in this study: problem geometry 

was not set up all at once, small steps were taken as the input progressed with literally 

hundreds of MCNP runs because each small change in input was verified, short job 

output statistics and reasonableness were examined carefully, the simplest geometry and 

source were chosen without sacrificing accuracy, all geometry was plotted using the 

visual editor to identify geometric problems, and all MCNP5 warning messages were 

investigated for each computational experiment. 

The tally utilized in our simulation was the energy deposition in units of MeV per 

voxel for both photons and electrons.  In MCNP, this tally is the pulse-height distribution 

in the detectors modified to energy times the weight (designated in MCNP as *F8:p,e in 

lattice form). 
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The modeled physical geometry included the void, air, phantom, and seeds 

(Figure 8).  The void consisted of all space outside the green sphere with radius 10 cm 

centered at the origin for all runs.  Outside the phantom, but within the 10 cm radius 

sphere, was air for all runs.  The computational description of the phantom followed the 

dimensions of the real one and was identical in all runs except for the seed positions.  The 

acrylic prostate phantom was represented by water, but the difference should be small for 

our case with 511 keV photons, as the difference in the mass interaction coefficients of 

these respective materials is demonstrated for 500 keV photons in Table 4. 

The phantom was centered in the X and Y directions and measured a total of 9 cm 

in both the X and Y directions.  The phantom length in Z direction was 8.8 cm and the Z 

= 0 plane was perpendicular to the longitudinal axis of the seed intersecting it at the seed 

center, corresponding to 5.7 cm down from the positive Z phantom surface and 3.1 cm up 

from the negative Z phantom surface.  The simulated brachytherapy seeds were 

constructed with iron to represent stainless steel.  The seeds are all the same size and 

shape consisting of the union of space between two cylinders with four planes for the 

ends—two defining the seed top and two defining the seed bottom.  The composition and 

mass density of materials incorporated in all input files were exactly the same.  Materials 

utilized for input are listed in Table 5. 

 
Table 4. Mass interaction coefficients listed for Water, Acrylic, and Tissue (ICRU 33 

four component definition) for 500 keV photons. 
 
Material µ/ρ g/cc Weight Fraction 
Water 0.09664 1.00 H 0.111894, O 0.888106 
Acrylic 0.09393 1.19 H 0.080541, C 0.599846, O 0.319613 
Tissue 0.09572 1.00 H 0.101174, C 0.111000, N 0.026000, O 0.761826 
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Figure 8. One Seed in Phantom with X-Z tally voxels (red) 128x128 matrix size with 

4.69 mm pixel size and 3.27 slice thickness that corresponds to the GE Discovery 
ST PET/CT scanner used in this study. 

 
 
Table 5. Material composition and mass density for materials used in MCNP input 

(courtesy of Bristol-Myers Squibb Medical Imaging). 
 
Material Element Weight Fraction 
Adult Tissue Hydrogen 0.10454 
Density = 1.04 g/cc Carbon 0.22663 
 Nitrogen 0.02490 
 Oxygen 0.63525 
 Sodium 0.00112 
 Magnesium 0.00013 
 Silicon 0.00030 
 Phosphorus 0.00134 
 Sulfur 0.00204 
 Chlorine 0.00133 
 Potassium 0.00208 
 Calcium 0.00024 
 Iron 0.00005 

 (table continued) 
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 Zinc 0.00003 
 Rubidium 0.00001 
 Zirconium 0.00001 
Water Hydrogen 0.11189 
Density = 1.00 g/cc Oxygen 0.88810 
Air Carbon 0.00012 
Density = 0.001020 g/cc Nitrogen 0.75527 
 Oxygen 0.23178 
 Argon 0.01283 
Iron Iron 1.00000 
Density = 7.86 g/cc   

  
 

3.3 Annihilation Source Geometry in the MCNP Simulation 

Source specification may be the most difficult and complicated part of MCNP 

input.  The accuracy of Monte Carlo is inherently limited by the investigators’ ability to 

accurately delineate the source internal geometry.[5] Although it can transport positrons 

as secondary particles, MCNP5 does not support positrons as source particles. Therefore 

no radioisotopes were used as sources for the MCNP5 theoretical experiments in this 

research.  All source particles were 511 keV photons meant to represent positron 

annihilation events from the F-18.  For the theoretical distributed source, photons 

originate at a random position and direction within the seed wall where we have shown 

that almost all positron annihilation events occur.  For the PET/CT measured distribution, 

a point source at the center of each voxel was assigned a probability based on the PET 

scanner raw output extracted from the DICOM format file.  Both source distributions 

were verified with MCNP print table 110 that lists the starting location and direction of 

the first fifty histories.  All events originating within a particular volume element cannot 

be distinguished based on location.  The three source geometries considered for this work 

(within one voxel) were point, line, and volume.  A point source at the voxel center 

would emit 511 keV photons with a frequency based on the relative intensity measured 
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with the PET scanner.  The line source is oriented in the Z direction, similar to the seed, 

and homogenized over the entire length with a frequency of photon emission again based 

on the scanner measurements.  The volume source would consist of random starting 

locations and directions from within the entire voxel element.  After careful 

consideration, the point source at voxel center was finally selected over the line or 

volume source.  A comparison of homogenized versus point source was done in a 

separate set of computational experiments detailed below, but this was not done for the 

line source due to time constraints.  Using a point source at the voxel center is the most 

practical choice resulting in reduced running time and reasonable input complexity. 

To insure that using point sources at the center of each voxel would not result in 

significant error, energy deposition from a uniform arrangements of voxel volume 

sources were compared to the energy deposition from a uniform arrangement of point 

sources at the center of each corresponding voxel.  The resulting energy deposition in 

each voxel was tallied for comparison along the Z-axis, but only within the source 

volume.  After further review of the results, another group of computations was 

conducted to examine the resulting dose distribution throughout the entire phantom as 

well.  We wanted to investigate the higher dose gradient regions on the periphery of 

source arrangements and the correspondence of dose deposition between the point and 

volumetric source cases extending outwards from the treatment volume.  Computations 

were conducted for small volumes on the order of one-voxel source up to comparatively 

much larger volume sources up to 15 x 15 x 15 voxels.  We expected that the discrepancy 

between point and volume sources would be the greatest for a small volume source, and 

smallest for a larger volume source, approximating the size of the prostate.  For larger 
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three-dimensional arrays, the difference between using a point source at the center of 

each voxel instead of a uniformly distributed array of voxel volume sources was close 

and well within the error reported by MCNP5.  The next chapter shows a comparison of 

computed dose depositions between point sources versus volume sources for the larger 

volume case. 

3.4 MCNP5 Energy Deposition Calculation Experiments 

 A summary list of the forty-nine MCNP5 computational experiments performed 

in the course of this research is given in Appendix A.  Experiments 1 through 7 

demonstrate theoretical seed source distributions; experiments 8 through 27 depict energy 

distributions due to voxel volume sources and arrangements of point sources at the center 

of those voxels; experiments 28 through 39 are for measured source data from Scan Set 

One; experiments 40 through 49 represent measured source data from the Scan Set Two.  

The experimental results are shown and discussed in Chapter 4. 

3.5 MCNP5 Uncertainty Analysis 

The statistical error, or uncertainty, associated with the result is equal in 

importance to the Monte Carlo tally itself.  MCNP tallies are normalized per starting 

particle and are printed in the output accompanied by a second number representing the 

relative standard deviation.  At the end of the output file is the tally fluctuation chart 

(TFC).[62] The TFC always should be studied to see how stable or reliable are the 

estimated mean, relative error (R), variance of the variance (VOV), figure of merit 

(FOM), and the slope of the largest history scores which are indicative of how the 

solution is converging as the number of photon histories, NPS. 
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CHAPTER 4 

RESULTS AND CONCLUSIONS 

4.1 Introduction 

Sajo and Williams developed a theoretical correspondence between the dose 

distributions due to the therapy dose and to a trace amount of positron emitter 

encapsulated within the seeds utilized in prostate brachytherapy implants.[3] The main 

aim of this research is to ascertain if PET image data of a positron tracer can be used for 

the quantitative description of dose distribution in support of direct prostate seed 

dosimetry.  To do this, we compared the dose distribution due to the 511 keV photons 

calculated from the annihilation event distribution of experimental measurements of 

mock brachytherapy seeds to a computer-modeled distribution of ideal positron emitting 

seeds.  If clinically implemented, this dosimetric technique could improve the accuracy, 

reproducibility, and complexity of absorbed dose calculations due to implanted sources.  

The results of this study are divided into three sections.  The first section provides the 

experimental and computational results, the second section is a discussion of the results, 

and the final section draws conclusions from the results and discussion. 

4.2 Results 

This section examines the Monte Carlo calculated dose distributions for the 

measured versus theoretical activity distributions.  Furthermore, the results due to the 

acquisition mode, reconstruction method, and maximum error bound are reported.  

Lastly, the results for the point versus volume source simulations are given. 

The results shown in Figures 9-14, as well as all figures in Appendix B, depict the 

Monte Carlo calculated energy deposition in individual voxel volume elements.  As 

 46



shown in Figure 8, the energy deposition was tallied in voxel arrays on the longitudinal 

and transverse phantom axis.  We studied the energy deposited per voxel because the 

desired dose determination grid is based on the PET data reported per voxel.  The dose 

distribution is obtained by dividing the energy deposition by the corresponding voxel 

mass.  All graphs include error bars representing the statistical error ±1σ of Monte Carlo 

calculations.  Appendix B provides a complete set of the Monte Carlo calculation results 

not summarized in this chapter, in both tabular and graphical form. 

Examination of the energy distributions indicates a small disagreement between 

the computed doses based on the measured data versus theoretical sources for certain 

cases.  In particular, the agreements for the one and two seed cases were close.   

For the one seed case, as shown in Figure 9, we found that 2D acquisition with 

OSEM reconstruction resulted in a maximum difference in transaxial dose distribution of 

15% in voxel two, and a mean difference of 4% for the remaining voxels. The mean 

discrepancy between dose computations based on the ideal source versus PET based 

source is within or close to the Monte Carlo error of 2% to 4%. 

For the two seed case, as shown in Figure 10, we found that 2D acquisition with 

OSEM reconstruction resulted in a maximum difference in transaxial dose distribution of 

16% in voxel one, and a mean difference of 2% for voxels two through six. The mean 

discrepancy between dose computations based on the ideal source versus PET based 

source is within or close to the Monte Carlo error of up to 3.5%. 

The results of Seed Arrangement Three are depicted in Figure 11, and consisted 

of two seeds together and one seed farther out as explained in Table 1 found in section 

2.10.  In pursuit of thoroughness we wanted to see if the proximal range of seeds had 
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consequences.  We believe that we found that the range does matter.  The largest 

discrepancy was 71% with an average difference of 32%. However, this geometry had 

the third seed in a position that is about 3.35 cm apart from the cluster of the two other 

seeds, with no other source in between. The result found in this experiment did not 

support our initial expectations that the worse agreement would be in cases when the 

seeds are in clusters, and the best agreement would be when the seeds are farther apart.  

This may be due to the fact that resolution effects are more important in higher gradient 

regions than in uniform regions. 
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Figure 9. Transaxial energy deposition for the one seed case for theoretical versus PET 
measured source distributions.  The PET data were acquired with 128x128 matrix, 
4.69 mm pixel size, 2D acquisition mode and OSEM reconstruction. 

 
 

For the first scan set, two-dimensional and three-dimensional acquisitions were 

performed for each seed arrangement.  Default reconstruction was selected for each 

acquisition: 128 x 128 matrix size, 4.69 mm pixel size, OSEM for 2D acquisition and 256 
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x 256 matrix size, 2.34 mm pixel size, 3D FORE IR for 3D acquisition.  The results were 

markedly better for the 2D acquisition. 
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Figure 10. Transaxial energy deposition for two seed case for theoretical versus PET 
measured source distributions.  The PET data were acquired with 128x128 matrix, 
4.69 mm pixel size, 2D acquisition mode and OSEM reconstruction. 
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Figure 11. Transaxial energy deposition for three seed case for theoretical versus PET 
measured source distributions.  The PET data were acquired with 128x128 matrix, 
4.69 mm pixel size, 2D acquisition mode and OSEM reconstruction. 
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Compared to the close correlation of the one seed case above, looking at graph for 

3D acquisition of the same single seed in Figure 12 shows obvious disparity in the result 

close to the seed that was found to be 65% different in voxel one, and 22% in voxel two. 

However, the next eleven dose positions exhibit a relatively good agreement with a mean 

difference of 3%.  These results could be because 3D acquisition is known to have more 

scatter and randoms, overall poorer resolution, but higher sensitivity.  The potential 

benefit of using 3D mode is that collecting many more lines of response requires less 

radioactivity with the dual benefit of reduced patient exposure and needing a reduced 

quantity of radiotracer.  

A brain acquisition protocol was performed during the second set of scans.  As it 

is in Figure 13, the brain protocol was not nearly as close to the theoretical distribution as 

the whole body protocol, showing large discrepancies from voxels 2 through 5. 
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Figure 12. Transaxial energy deposition for one seed case for theoretical versus PET 
measured source distributions.  The PET data were acquired with 256 x 256 
matrix, 2.34 mm pixel size, 3D acquisition mode and 3D FORE IR reconstruction. 
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For the Scan Set Two, all acquisitions were two-dimensional, however there was 

a question if the results could be improved by an alternate image reconstruction matrix 

and voxel size.  The Scan Set Two acquisitions were reconstructed with OSEM 

consisting of 128 x 128 matrix with 4.69 mm voxel size and one step smaller voxel size, 

256 x 256 matrix with 2.34 mm voxel size, as seen in Figure 12.  We found that the 

default 128 x 128 matrix size reconstruction with 4.69 mm voxel size provided the 

closest results in all cases. 
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Figure 13. Transaxial energy deposition for one seed case for theoretical versus PET 
measured source distributions.  The PET data were acquired with 128 x 128 
matrix, 4.69 mm pixel size, 2D acquisition with Whole Body and Brain protocols 
and OSEM reconstruction. 

 

Because we don’t know the precise seed location within the voxel, there is some 

uncertainty in assigning the voxel activity to the voxel center.  Because we assigned the 

largest voxel value to the voxel containing the seed, the seed could be located anywhere 

within that voxel.  We wanted to determine that our results were consistent with this 

assumption, so calculations were performed with the source data shifted by one half 
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voxel in both the positive X and negative X directions.  All graphed values are within 

these limits that could be due to the assumption of placing the seed in the center of the 

voxel.  Because a half-voxel was the maximum possible shift due to our assumption, this 

represents the maximum error bound due to this assumption.  The results we obtained 

were within this outer-bound.  Our result did indeed fall within the maximum and 

minimum values found due to these shifts seen in Figure 14. 
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Figure 14. Transaxial energy deposition for one seed case for PET measured source 
distributions located at the voxel center versus data shifted one-half voxel 
distance in the positive and negative X directions.  The PET data were acquired 
with 128 x 128 matrix, 4.69 mm pixel size, 2D acquisition with Whole Body and 
Brain protocols and OSEM reconstruction. 

 

Finally, several Monte Carlo calculations were performed to insure that using an 

array of point sources located at each voxel center would not significantly alter the tally 

results. We expect that the dose within an array of seeds can be well approximated by 

using point sources. This approximation should be largest at the perimeter of the array.  

Initially only the internal part of the array was tallied, but after further review of the data, 
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a decision was made to tally all voxels from the origin out to the phantom edge in another 

set of calculations.  This would allow us to see how the deposited energy varied from 

inside the source region, through and beyond the array boundary. 

A number of source arrays were considered, starting with the simplest case of a 

single source. The studies comparing the energy deposition for inside the source region 

was tallied along the Z-axis.  The largest discrepancy was, as expected, for the single 

voxel distributed volume source versus a single point source at the voxel center.  Similar 

studies were performed for 3 x 3 x 3, 5 x 5 x 5, 7 x 7 x 7, and 15 x 15 x 15 voxels 

measuring 2 mm on each side.   Table 6 summarizes the voxel arrangement. The infinite 

arrangement was achieved by using reflective boundaries in the computations. 

 
Table 6. Point versus volume source study cases. 

Case Voxel Arrangement Point Sources (Voxel Center) 
1 1 1 
2 3 x 3 x 3 27 
3 5 x 5 x 5 125 
4 7 x 7 x 7 343 
5 15 x 15 x 15 3375 
6 Infinite Infinite 
 

As expected, the single distributed source versus single point source case 

provided the largest discrepancy in energy deposition within the source voxel of 34.87%.  

The internal results for all but the point source are illustrated in the Figures 15 and 16, 

with Figure 16 showing that for the 15 x 15 x 15 array that the results are within the 

Monte Carlo calculation uncertainty.  Figure 17 demonstrates the energy deposition 

throughout the phantom for the 15 x 15 x 15 distribution. 
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Because the energy deposited in the voxels of the point source and distributed 

volume source in the 15 x 15 x 15 case were within the calculation uncertainty, using the 

point sources for the smallest matrix of 47 slices with 128 x 128 pixels should yield 

adequate results for our purposes.  The infinite lattice was designed by placing reflective 

surfaces around one voxel.  The energy deposited in both the point and distributed source 

for the infinite case was as expected—511 keV.   

4.3 Discussion 

These results do not reflect any optimized acquisition protocol or reconstruction 

algorithms that might further reduce the observed differences.  We do not know the 

details of any of the specific reconstruction algorithms used in our scans because it is 

proprietary corporate knowledge.  In addition, there is an unreported error due to scanner 

uncertainty, which is also proprietary information. 
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Figure 15. Point versus voxel volume source comparison of dose deposition inside the 
source array other than case one. 
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Figure 16. Point versus voxel volume source comparison of dose deposition inside a 15 x 
15 x 15 source array arrangement. 
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Figure 17. Point versus voxel volume source comparison of dose for entire phantom 
using 15 x 15 x 15 arrangement. 

 

Because the 256 x 256 matrix reconstruction provided worse results from data 

already verified as close with 128 x 128 matrix reconstruction, we concluded that the 

reconstruction does affect the data quality.  Furthermore, this means that the data may 

actually be improved by optimizing the reconstruction routines for quantitative integrity 
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since we are not interested in the qualitative or diagnostic use of these images.  In several 

cases, discrepancies may be due to reconstruction inadequacies such as applying a filter 

that is sub-optimal for quantitative optimization.  Data can clearly be made worse by 

poorly chosen reconstruction parameters, thus it can be also optimized for strictly 

quantitative use.  If inadequacies were due to bad statistics, we would see worse results 

primarily far away from the source.  Data are used qualitatively by manufacturers for 

visual image analysis, but to optimize the quantitative voxel values may require separate 

algorithms.  To conduct standardized QA testing, GE can provide generic reconstruction 

programs.  Data not altered for visual optimization may be even better for our 

quantitative use. 

The reconstruction parameters (filters, etc.) and their effect on the data are 

unknown.  Insufficient knowledge about image reconstruction specifics may be 

responsible for discrepancies observed in the generated data.  Even though the scanner 

may opt for a more robust 3D iterative reconstruction, the DICOM files are still 

individual slices of 2D information. 

Of concern was the significance of outlying counts.  An attempt was made to 

include all measured events but clearly a cutoff was needed.  Because using all slice data 

for input crashed MCNP5, we had to determine what input information could be 

eliminated with confidence.  It has been reported that image blurring caused by scattered 

events may lead to important quantification errors.  This is complicated by the fact that 

advanced nuclear medical imaging systems collect multiple attributes of a large number 

of photon events resulting in extremely large datasets which present challenges to image 

reconstruction and assessment.  We thought data from outside the positron range was 
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false.  Because of the short range of F-18 positrons in water, we found that using the 

positron range with one extra voxel margin was adequate to remove spurious counts.  

This resulted in five slices of data with a corresponding matrix size in the X-Y plane.  To 

be thorough, while not eliminating so much data to have an effect on our result, we 

investigated using a larger range of input based on nine slices with similar increase in x-y 

voxel range.  The quality of agreement between the five and nine slice inputs is 

remarkable. In the Figures 9-12 above, the results for nine and five slices of data are 

compared. Practically, there is no appreciable difference between the results.  Therefore, 

utilizing five slices of data around the seed arrangement appears safe and more reduction 

may be possible.  By comparing the different input matrices, the positron range appears 

reasonable for determining what data could be disregarded with confidence. 

There is a very good agreement in the case of increasing numbers of point sources 

representing voxel volume sources.  For the largest number of tested sources, the 

difference is within the Monte Carlo calculation error average of 5%.  To insure that a 

point source at the center of each voxel would accurately represent the relative activity 

for a voxel volume source, several cases were designed and analyzed for comparison.   

Even though a point source located at the center was the most practical source for 

each voxel, the seed geometry in both the real and theoretical cases is closer to a line 

source oriented parallel to the Z-axis.  Line sources located at the center of each pixel in 

the X and Y direction but extending the entire length of the voxel in the Z direction 

parallel to the Z-axis are possible, but provide problems as well.  The raw output data 

from the PET scanner is assigned to that length with a uniform distribution along the line 

throughout that voxel.  A line source in that voxel could artificially stretch the activity in 
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the Z direction.  While this might be a little better than the point approximation, we did 

not have time to explore this due to the complicated source geometry involved. 

4.4 Conclusions 

In general, the Monte Carlo simulations of dose based on theoretical annihilation 

source predict those due to the measured positron annihilation event distribution with 

remarkable accuracy.  It was found that for closely clustered seeds the measured energy 

distribution provided the highest confidence levels when the two-dimensional whole 

body acquisition protocol and OSEM image reconstruction with 128 x 128 matrix size 

and 4.69 mm pixel size were utilized.  The brain acquisition protocol was no 

improvement over the whole body protocol. 

In determining the region of interest, or the computational domain for the 

annihilation source, the positron range with a one-voxel margin was found adequate. This 

allowed us to reduce the computational complexity of the problem, and raises the 

possibility of further simplifications.  

We further found that two-dimensional acquisition is better than three-

dimensional acquisition for our purposes.  The 128x128 reconstruction matrix with a 4.69 

mm pixel size provided the closest comparison.   

The intent of this study was to determine if the positron annihilation distribution 

matrix could be directly used, as extracted from the DICOM files, to determine the 

positron dose with sufficient certainty.  The capabilities of the pure PET-based dose 

computation were explored because we did not use the CT-derived cross-sections, only 

the acrylic cross-section.  The overall agreement of the Monte Carlo calculations shows 

that calculating the dose due to positrons using the extracted PET data is feasible. The 
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excellent agreement between most of the cases suggests that PET/CT is a viable option 

for extracting the positron activity matrix from brachytherapy seeds.  Our experimental 

results appear to support the hypothesis that the PET image data of a positron tracer can 

be used for the quantitative description of dose distribution.  If the PET/CT scanner 

output could be used to map the dose distribution due to a positron emitter inside 

brachytherapy seeds, dose volume histograms could be plotted in three-dimensional 

space relative to critical anatomical structures with different threshold techniques applied 

to the extrapolated data.   

We have used Monte Carlo simulation to duplicate carefully modeled phantom 

and seed arrangements geometries as well as arrays of voxels as a detector structure.  

Comparison of energy deposition per voxel derived from measured and calculated 

distributions is shown to yield excellent agreement under certain circumstances. 

Implant quality is based on the skill of the physician, but technical difficulties 

inhibit consistency.  A method of dosimetry based on PET/CT acquired data may some 

day provide a one step dosimetric evaluation that can identify the prostate, critical 

structures, and the therapeutic dose which can then be fused together. This work indicates 

there is potential for using PET data for the proposed link between the therapeutic 

brachytherapy dose and the dose due to a trace amount of encapsulated positron emitter, 

as developed by Sajo and Williams.[3] Because this method does not require explicit 

information on seed locations, clinical implementation of this technique could 

significantly reduce the time needed for post-implant evaluation, and several of the 

uncertainties and limitations inherent in current prostate brachytherapy dosimetry. 
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APPENDIX A 

LIST OF MCNP5 COMPUTATIONAL EXPERIMENTS 

In this appendix is a complete list of the 49 MCNP5 computational experiments 

conducted for this research.  Experiments 1 through 7 demonstrate theoretical seed source 

distributions; experiments 8 through 27 depict energy distributions due to voxel volume 

sources and arrangements of point sources at the center of those voxels; experiments 28 

through 39 are for measured source data from Scan Set One; experiments 40 through 49 

represent measured source data from the Scan Set Two. 

A.1 Energy Deposition Distributions Due to Theoretical Ideal Seed Sources 

Experiment 1 
Single Seed Theoretical 128 
Output File Name:  rptsouz 
Source Distribution:  Theoretical seed distribution 
Acquisition Mode:  N/A 
Seed Arrangement One 
Tally Size and Direction:  matrix size 128x128 
Positive X, 9 voxels, pixel size 4.69 mm 
Positive Z, 16 voxels, slice thickness 3.27 mm 

Experiment 2 
Double Seed Theoretical 128 
Output File Name:  rp2s1out 
Source Distribution:  Theoretical seed distribution 
Acquisition Mode:  N/A 
Seed Arrangement Two 
Tally Size and Direction:  matrix size 128x128, pixel size 4.69 mm 
Negative X, 9 voxels, pixel size 4.69 mm 
Positive Z, 16 voxels, slice thickness 3.27 mm 

Experiment 3 
Triple Seed Theoretical 128 
Output File Name:  rp3s1oux 
Source Distribution:  Theoretical seed distribution 
Acquisition Mode:  N/A 
Seed Arrangement Three 
Tally Size and Direction:  matrix size 128x128, pixel size 4.69 mm 
Negative Y, 9 voxels, pixel size 4.69 mm 
Positive Z, 16 voxels, slice thickness 3.27 mm 

Experiment 4 
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Single Seed Theoretical 256 
Output File Name:  rpt6ouu 
Source Distribution:  Theoretical seed distribution 
Acquisition Mode:  N/A 
Seed Arrangement One 
Tally Size and Direction:  matrix size 256x256, pixel size 2.34 mm 
Positive X, 18 voxels, pixel size 2.34 mm 
Positive Z, 16 voxels, slice thickness 3.27 mm 

Experiment 5 
Double Seed Theoretical 256 
Output File Name:  rp2s2ouw 
Source Distribution:  Theoretical seed distribution 
Acquisition Mode:  N/A 
Seed Arrangement Two 
Tally Size and Direction:  matrix size 256x256, pixel size 2.34 mm 
Negative X, 18 voxels, pixel size 2.34 mm 
Positive Z, 16 voxels, slice thickness 3.27 mm 

Experiment 6 
Triple Seed Theoretical 256 
Output File Name:  rp3s2ouv 
Source Distribution:  Theoretical seed distribution 
Acquisition Mode:  N/A 
Seed Arrangement Three 
Tally Size and Direction:  matrix size 256x256, pixel size 2.34 mm 
Negative Y, 18 voxels, pixel size 2.34 mm 
Positive Z, 16 voxels, slice thickness 3.27 mm 

Experiment 7 
Single Seed Theoretical Brain 256 
Output File Name:  brn1oux 
Source Distribution:  Theoretical seed distribution 
Acquisition Mode:  N/A 
Seed Arrangement One 
Tally Size and Direction:  matrix size 256x256, pixel size 1.17 mm 
Positive X, 37 voxels, pixel size 1.17 mm 
Positive Z, 16 voxels, slice thickness 3.27 mm 
 

A.2 Energy Deposition Distributions Due to Voxel and Point Sources 
 

Experiment 8 
One Voxel Volume Source Internal Distribution 
Output File Name:  1x1s 
Source Distribution:  One Voxel Volume 
Acquisition Mode:  N/A 
Seed Arrangement:  N/A 
Tally Size and Direction:  matrix size infinite, pixel size 2.00 mm 
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Single voxel tally corresponding to the voxel at the origin 
Experiment 9 

One Voxel Point Source Internal Distribution 
Output File Name:  1x1po 
Source Distribution:  One point source at single voxel center 
Acquisition Mode:  N/A 
Seed Arrangement:  N/A 
Tally Size and Direction:  matrix size infinite, pixel size 2.00 mm 
Single voxel tally corresponding to the voxel at the origin 

Experiment 10 
27 Voxel Volume Source Internal Distribution 
Output File Name:  3x3q 
Source Distribution:  27 voxel volumes in 3x3x3 arrangement 
Acquisition Mode:  N/A 
Seed Arrangement:  N/A 
Tally Size and Direction:  matrix size infinite, pixel size 2.00 mm 
3 voxels tallied corresponding to the internal Z-axis 

Experiment 11 
27 Point Source Internal Distribution 
Output File Name:  3x3po 
Source Distribution:  27 points at voxel centers in 3x3x3 arrangement 
Acquisition Mode:  N/A 
Seed Arrangement:  N/A 
Tally Size and Direction:  matrix size infinite, pixel size 2.00 mm 
3 voxels tallied corresponding to the internal Z-axis 

Experiment 12 
125 Voxel Volume Source Internal Distribution 
Output File Name:  5x5p 
Source Distribution:  125 voxel volumes in 5x5x5 arrangement 
Acquisition Mode:  N/A 
Seed Arrangement:  N/A 
Tally Size and Direction:  matrix size infinite, pixel size 2.00 mm 
5 voxels tallied corresponding to the internal Z-axis 

Experiment 13 
125 Point Source Internal Distribution 
Output File Name:  5x5pq 
Source Distribution:  125 points at voxel centers in 5x5x5 arrangement 
Acquisition Mode:  N/A 
Seed Arrangement:  N/A 
Tally Size and Direction:  matrix size infinite, pixel size 2.00 mm 
5 voxels tallied corresponding to the internal Z-axis 

Experiment 14 
343 Voxel Volume Source Internal Distribution 
Output File Name:  7x7p 
Source Distribution:  343 voxel volumes in 7x7x7 arrangement 
Acquisition Mode:  N/A 
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Seed Arrangement:  N/A 
Tally Size and Direction:  matrix size infinite, pixel size 2.00 mm 
7 voxels tallied corresponding to the internal Z-axis 

Experiment 15 
343 Point Source Internal Distribution 
Output File Name:  7x7ps 
Source Distribution:  343 points at voxel centers in 7x7x7 arrangement 
Acquisition Mode:  N/A 
Seed Arrangement:  N/A 
Tally Size and Direction:  matrix size infinite, pixel size 2.00 mm 
7 voxels tallied corresponding to the internal Z-axis 

Experiment 16 
3375 Voxel Volume Source Internal Distribution 
Output File Name:  15vq 
Source Distribution:  3375 voxel volumes in 15x15x15 arrangement 
Acquisition Mode:  N/A 
Seed Arrangement:  N/A 
Tally Size and Direction:  matrix size infinite, pixel size 2.00 mm 
15 voxels tallied corresponding to the internal Z-axis 

Experiment 17 
3375 Point Source Internal Distribution 
Output File Name:  15pOuw 
Source Distribution:  3375 points at voxel centers in 15x15x15 arrangement 
Acquisition Mode:  N/A 
Seed Arrangement:  N/A 
Tally Size and Direction:  matrix size infinite, pixel size 2.00 mm 
15 voxels tallied corresponding to the internal Z-axis 

Experiment 18 
One Voxel Volume Source External Distribution 
Output File Name:  1x1out 
Source Distribution:  One Voxel Volume 
Acquisition Mode:  N/A 
Seed Arrangement:  N/A 
Tally Size and Direction:  matrix size infinite, pixel size 2.00 mm 
59 voxels tallied comprised of the entire phantom Z-axis 

Experiment 19 
One Voxel Point Source External Distribution 
Output File Name:  1x1pout 
Source Distribution:  One point source at single voxel center 
Acquisition Mode:  N/A 
Seed Arrangement:  N/A 
Tally Size and Direction:  matrix size infinite, pixel size 2.00 mm 
59 voxels tallied comprised of the entire phantom Z-axis 

Experiment 20 
27 Voxel Volume Source External Distribution 
Output File Name:  3x3out 
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Source Distribution:  27 voxel volumes in 3x3x3 arrangement 
Acquisition Mode:  N/A 
Seed Arrangement:  N/A 
Tally Size and Direction:  matrix size infinite, pixel size 2.00 mm 
59 voxels tallied comprised of the entire phantom Z-axis 

Experiment 21 
27 Point Source External Distribution 
Output File Name:  3x3pout 
Source Distribution:  27 points at voxel centers in 3x3x3 arrangement 
Acquisition Mode:  N/A 
Seed Arrangement:  N/A 
Tally Size and Direction:  matrix size infinite, pixel size 2.00 mm 
59 voxels tallied comprised of the entire phantom Z-axis 

Experiment 22 
125 Voxel Volume Source External Distribution 
Output File Name:  5x5out 
Source Distribution:  125 voxel volumes in 5x5x5 arrangement 
Acquisition Mode:  N/A 
Seed Arrangement:  N/A 
Tally Size and Direction:  matrix size infinite, pixel size 2.00 mm 
59 voxels tallied comprised of the entire phantom Z-axis 

Experiment 23 
125 Point Source External Distribution 
Output File Name:  5x5pout 
Source Distribution:  125 points at voxel centers in 5x5x5 arrangement 
Acquisition Mode:  N/A 
Seed Arrangement:  N/A 
Tally Size and Direction:  matrix size infinite, pixel size 2.00 mm 
59 voxels tallied comprised of the entire phantom Z-axis 

Experiment 24 
343 Voxel Volume Source External Distribution 
Output File Name:  7x7out 
Source Distribution:  343 voxel volumes in 7x7x7 arrangement 
Acquisition Mode:  N/A 
Seed Arrangement:  N/A 
Tally Size and Direction:  matrix size infinite, pixel size 2.00 mm 
59 voxels tallied comprised of the entire phantom Z-axis 

Experiment 25 
343 Point Source External Distribution 
Output File Name:  7x7pout 
Source Distribution:  343 points at voxel centers in 7x7x7 arrangement 
Acquisition Mode:  N/A 
Seed Arrangement:  N/A 
Tally Size and Direction:  matrix size infinite, pixel size 2.00 mm 
59 voxels tallied comprised of the entire phantom Z-axis 

Experiment 26 
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3375 Voxel Volume Source External Distribution 
Output File Name:  15vouz 
Source Distribution:  3375 voxel volumes in 15x15x15 arrangement 
Acquisition Mode:  N/A 
Seed Arrangement:  N/A 
Tally Size and Direction:  matrix size infinite, pixel size 2.00 mm 
59 voxels tallied comprised of the entire phantom Z-axis 

Experiment 27 
3375 Point Source External Distribution 
Output File Name:  15poux 
Source Distribution:  3375 points at voxel centers in 15x15x15 arrangement 
Acquisition Mode:  N/A 
Seed Arrangement:  N/A 
Tally Size and Direction:  matrix size infinite, pixel size 2.00 mm 
59 voxels tallied comprised of the entire phantom Z-axis 
 

A.3 Energy Deposition Distributions From Second Scan Measured Data 
 
Experiment 28 

Single Seed First Scan Set 128—5 slices 
Output File Name:  rpt4ouv 
Source Distribution:  PET/CT measured distribution of 5 pixel x 5 pixel x 5 slice 
Acquisition Mode:  Two-dimensional 
Seed Arrangement One 
Tally Size and Direction:  matrix size 128x128, pixel size 4.69 mm 
Positive X, 9 voxels, pixel size 4.69 mm 
Positive Z, 16 voxels, slice thickness 3.27 mm 

Experiment 29 
Single Seed First Scan Set 128—9 slices 
Output File Name:  rpt5ouu 
Source Distribution:  PET/CT measured distribution of 9 pixel x 9 pixel x 9 slice 
Acquisition Mode:  Two-dimensional 
Seed Arrangement One 
Tally Size and Direction:  matrix size 128x128, pixel size 4.69 mm 
Positive X, 9 voxels, pixel size 4.69 mm 
Positive Z, 16 voxels, slice thickness 3.27 mm 

Experiment 30 
Double Seed First Scan Set 128—5 slices 
Output File Name:  rp2s3ouv 
Source Distribution:  PET/CT measured distribution of 5 pixel x 5 pixel x 5 slice 
Acquisition Mode:  Two-dimensional 
Seed Arrangement Two 
Tally Size and Direction:  matrix size 128x128, pixel size 4.69 mm 
Negative X, 9 voxels, pixel size 4.69 mm 
Positive Z, 16 voxels, slice thickness 3.27 mm 

Experiment 31 
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Double Seed First Scan Set 128—9 slices 
Output File Name:  rp2s4ouu 
Source Distribution:  PET/CT measured distribution of 9 pixel x 9 pixel x 9 slice 
Acquisition Mode:  Two-dimensional 
Seed Arrangement Two 
Tally Size and Direction:  matrix size 128x128, pixel size 4.69 mm 
Negative X, 9 voxels, pixel size 4.69 mm 
Positive Z, 16 voxels, slice thickness 3.27 mm 

Experiment 32 
Triple Seed First Scan Set 128—5 slices 
Output File Name:  rp3s3ouz 
Source Distribution:  PET/CT measured distribution of 5 pixel x 5 pixel x 5 slice 
Acquisition Mode:  Two-dimensional 
Seed Arrangement Three 
Tally Size and Direction:  matrix size 128x128, pixel size 4.69 mm 
Negative Y, 9 voxels, pixel size 4.69 mm 
Positive Z, 16 voxels, slice thickness 3.27 mm 

Experiment 33 
Triple Seed First Scan Set 128—9 slices 
Output File Name:  rp3s4oux 
Source Distribution:  PET/CT measured distribution of 9 pixel x 9 pixel x 9 slice 
Acquisition Mode:  Two-dimensional 
Seed Arrangement Three 
Tally Size and Direction:  matrix size 128x128, pixel size 4.69 mm 
Negative Y, 9 voxels, pixel size 4.69 mm 
Positive Z, 16 voxels, slice thickness 3.27 mm 

Experiment 34 
Single Seed First Scan Set 256—5 slices 
Output File Name:  rpt7ouv 
Source Distribution:  PET/CT measured distribution of 9 pixel x 9 pixel x 5 slice 
Acquisition Mode:  Three-dimensional 
Seed Arrangement One 
Tally Size and Direction:  matrix size 256x256, pixel size 2.34 mm 
Positive X, 18 voxels, pixel size 2.34 mm 
Positive Z, 16 voxels, slice thickness 3.27 mm 

Experiment 35 
Single Seed First Scan Set 256—9 slices 
Output File Name:  rpt8ouz 
Source Distribution:  PET/CT measured distribution of 17 pixel x 17 pixel x 9 
slice 
Acquisition Mode:  Three-dimensional 
Seed Arrangement One 
Tally Size and Direction:  matrix size 256x256, pixel size 2.34 mm 
Positive X, 18 voxels, pixel size 2.34 mm 
Positive Z, 16 voxels, slice thickness 3.27 mm 

Experiment 36 
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Double Seed First Scan Set 256—5 slices 
Output File Name:  rp2s5ouu 
Source Distribution:  PET/CT measured distribution of 9 pixel x 9 pixel x 5 slice 
Acquisition Mode:  Three-dimensional 
Seed Arrangement Two 
Tally Size and Direction:  matrix size 256x256, pixel size 2.34 mm 
Negative X, 18 voxels, pixel size 2.34 mm 
Positive Z, 16 voxels, slice thickness 3.27 mm 

Experiment 37 
Double Seed First Scan Set 256—9 slices 
Output File Name:  rpts6ouu 
Source Distribution:  PET/CT measured distribution of 17 pixel x 17 pixel x 9 
slice 
Acquisition Mode:  Three-dimensional 
Seed Arrangement Two 
Tally Size and Direction:  matrix size 256x256, pixel size 2.34 mm 
Negative X, 18 voxels, pixel size 2.34 mm 
Positive Z, 16 voxels, slice thickness 3.27 mm 

Experiment 38 
Triple Seed First Scan Set 256—5 slices 
Output File Name:  rp3s5ouv 
Source Distribution:  PET/CT measured distribution of 9 pixel x 9 pixel x 5 slice 
Acquisition Mode:  Three-dimensional 
Seed Arrangement Three 
Tally Size and Direction:  matrix size 256x256, pixel size 2.34 mm 
Negative Y, 18 voxels, pixel size 2.34 mm 
Positive Z, 9 voxels, slice thickness 3.27 mm 

Experiment 39 
Triple Seed First Scan Set 256—9 slices 
Output File Name:  rp3s6ouw 
Source Distribution:  PET/CT measured distribution of 17 pixel x 17 pixel x 9 
slice 
Acquisition Mode:  Three-dimensional 
Seed Arrangement Three 
Tally Size and Direction:  matrix size 256x256, pixel size 2.34 mm 
Negative Y, 18 voxels, pixel size 2.34 mm 
Positive Z, 9 voxels, slice thickness 3.27 mm 

Experiment 40 
Single Seed Second Scan Set (also Maximum Error Bound Voxel Center) 
Output File Name:  meb1ouv 
Source Distribution:  PET/CT measured distribution of 5 pixel x 5 pixel x 5 slice 
Acquisition Mode:  Two-dimensional 
Seed Arrangement One 
Tally Size and Direction:  matrix size 128x128, pixel size 4.69 mm 
Positive X, 9 voxels, pixel size 4.69 mm 
Positive Z, 16 voxels, slice thickness 3.27 mm 
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Experiment 41 
Single Seed Second Scan Set 256 (also Maximum Error Bound Voxel Center) 
Output File Name:  meb4ouu 
Source Distribution:  PET/CT measured distribution of 9 pixel x 9 pixel x 5 slice 
Acquisition Mode:  Two-dimensional 
Seed Arrangement One 
Tally Size and Direction:  matrix size 256x256, pixel size 2.34 mm 
Positive X, 18 voxels, pixel size 2.34 mm 
Positive Z, 16 voxels, slice thickness 3.27 mm 

Experiment 42 
Maximum Error Bound Negative X Shift 128 
Output File Name:  meb2ouy 
Source Distribution:  PET/CT measured distribution 
Acquisition Mode:  Two-dimensional 
Seed Arrangement One 
Tally Size and Direction:  matrix size 128x128, pixel size 4.69 mm 
Positive X, 9 voxels, pixel size 4.69 mm 

Experiment 43 
Maximum Error Bound Positive X Shift 128 
Output File Name:  meb3ouy 
Source Distribution:  PET/CT measured distribution 
Acquisition Mode:  Two-dimensional 
Seed Arrangement One 
Tally Size and Direction:  matrix size 128x128, pixel size 4.69 mm 
Positive X, 9 voxels, pixel size 4.69 mm 

Experiment 44 
Maximum Error Bound Negative X Shift 256 
Output File Name:  meb5ouv 
Source Distribution:  PET/CT measured distribution 
Acquisition Mode:  Three-dimensional 
Seed Arrangement One 
Tally Size and Direction:  matrix size 256x256, pixel size 2.34 mm 
Positive X, 18 voxels, pixel size 2.34 mm 

Experiment 45 
Maximum Error Bound Positive X Shift 256 
Output File Name:  meb6ouu 
Source Distribution:  PET/CT measured distribution 
Acquisition Mode:  Three-dimensional 
Seed Arrangement One 
Tally Size and Direction:  matrix size 256x256, pixel size 2.34 mm 
Positive X, 18 voxels, pixel size 2.34 mm 

Experiment 46 
Triple Seed Second Scan Set 
Output File Name:  3sa3ouu 
Source Distribution:  PET/CT measured distribution of 5 pixel x 5 pixel x 5 slice 
Acquisition Mode:  Two-dimensional 
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Seed Arrangement Three 
Tally Size and Direction:  matrix size 128x128, pixel size 4.69 mm 
Negative X, 9 voxels, pixel size 4.69 mm 
Positive Z, 16 voxels, slice thickness 3.27 mm 

Experiment 47 
Triple Seed Second Scan Set 
Output File Name:  3sa4out 
Source Distribution:  PET/CT measured distribution of 9 pixel x 9 pixel x 5 slice 
Acquisition Mode:  Two-dimensional 
Seed Arrangement Three 
Tally Size and Direction:  matrix size 256x256, pixel size 2.34 mm 
Negative X, 18 voxels, pixel size 2.34 mm 
Positive Z, 16 voxels, slice thickness 3.27 mm 

Experiment 48 
Single Seed Second Scan Set Brain Protocol 128 
Output File Name:  branouu 
Source Distribution:  PET/CT measured distribution of 5 pixel x 5 pixel x 5 slice 
Acquisition Mode:  Two-dimensional 
Seed Arrangement One 
Tally Size and Direction:  matrix size 128x128, pixel size 4.69 mm 
Positive X, 9 voxels, pixel size 4.69 mm 
Positive Z, 16 voxels, slice thickness 3.27 mm 

Experiment 49 
Single Seed Second Scan Set Brain Protocol 256 
Output File Name:  brn2ouw 
Source Distribution:  PET/CT measured distribution of 18 pixel x 18 pixel x 5 
slice 
Acquisition Mode:  Two-dimensional 
Seed Arrangement One 
Tally Size and Direction:  matrix size 256x256, pixel size 1.17 mm 
Positive X, 37 voxels, pixel size 1.17 mm 
Positive Z, 16 voxels, slice thickness 3.27 mm 
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APPENDIX B 

GRAPHS AND TABLES OF COMPUTATIONAL RESULTS 

 This appendix contains graphs comparing energy deposition per voxel.  

The tables below have additional calculations as follows:  

Relative Discrepancy 







Source Ideal From DepositedEnergy 

Data Measured From DepositedEnergy   =

DepositionEnergy Center 
DepositionEnergy  ShiftedBoundError  Actual =  

( ) ( ) ( )22 Error RelativeCenter Error Relative ShiftedBoundError  Actual  BoundError  Absolute +=
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Figure 18. Transaxial energy deposition for the one seed case for theoretical versus PET 
measured source distributions.  The PET data were acquired with 128x128 matrix, 
3.27 mm slice thickness, 2D acquisition mode and OSEM reconstruction. 
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MCNP Calculated Energy Deposition
Based on 3-D Acquisition of One Seed
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Figure 19. Transaxial energy deposition for one seed case for theoretical versus PET 
measured source distributions.  The PET data were acquired with 256 x 256 
matrix, 3.27 mm slice thickness, 3D acquisition mode and 3D FORE IR 
reconstruction. 

 

MCNP Calculated Energy Deposition
Based on 2-D Acquisition of Two Seeds 
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Figure 20. Transaxial energy deposition for the two seed case for theoretical versus PET 
measured source distributions.  The PET data were acquired with 128x128 matrix, 
3.27 mm slice thickness, 2D acquisition mode and OSEM reconstruction. 
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MCNP Calculated Energy Deposition
Based on 3-D Acquisition of Two Seeds

Negative X-Axis Comparison

1.00E-06

1.00E-05

1.00E-04

1.00E-03
18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Voxel Distance From Origin (2.34 mm)

En
er

gy
 D

ep
os

iti
on

 (M
eV

)

Theoretical

9x9x5 Slice

17x17x9 Slice

 

Figure 21. Transaxial energy deposition for two seed case for theoretical versus PET 
measured source distributions.  The PET data were acquired with 256 x 256 
matrix, 2.34 mm pixel size, 3D acquisition mode and 3D FORE IR reconstruction. 
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Figure 22. Transaxial energy deposition for two seed case for theoretical versus PET 
measured source distributions.  The PET data were acquired with 256 x 256 
matrix, 3.27 mm slice thickness, 3D acquisition mode and 3D FORE IR 
reconstruction. 
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MCNP Calculated Energy Deposition
Based on 2-D Acquisition of Three Seeds 
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Figure 23. Transaxial energy deposition for the three seed case for theoretical versus PET 
measured source distributions.  The PET data were acquired with 128x128 matrix, 
3.27 mm slice thickness, 2D acquisition mode and OSEM reconstruction. 
 

MCNP Calculated Energy Deposition
Based on 3-D Acquisition of Three Seeds

Negative Y-Axis Comparison

1.00E-06

1.00E-05

1.00E-04

1.00E-03
18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Voxel Distance From Origin (2.34 mm)

En
er

gy
 D

ep
os

iti
on

 (M
eV

)

Theoret ical

9x9x5 Slice

17x17x9 Slice

 

Figure 24. Transaxial energy deposition for three seed case for theoretical versus PET 
measured source distributions.  The PET data were acquired with 256 x 256 
matrix, 2.34 mm pixel size, 3D acquisition mode and 3D FORE IR reconstruction. 
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MCNP Calculated Energy Deposition
Based on 3-D Acquisition of Three Seeds
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Figure 25. Transaxial energy deposition for three seed case for theoretical versus PET 
measured source distributions.  The PET data were acquired with 256 x 256 
matrix, 3.27 mm slice thickness, 3D acquisition mode and 3D FORE IR 
reconstruction. 
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Figure 26. Transaxial energy deposition for the one seed case for theoretical versus PET 
measured source distributions.  The PET data were acquired with 128 x 128 
matrix, 4.69 mm pixel size, 2D acquisition mode and OSEM reconstruction. 
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Figure 27. Transaxial energy deposition for the one seed case for theoretical versus PET 
measured source distributions.  The PET data were acquired with 256 x 256 
matrix, 2.34 mm pixel size, 2D acquisition mode and OSEM reconstruction. 
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Figure 28. Transaxial energy deposition for the one seed case for theoretical versus PET 
measured source distributions.  The PET data were acquired with 128x128 matrix, 
3.27 mm slice thickness, 2D acquisition mode and OSEM reconstruction. 
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MCNP Calculated Energy Deposition
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Figure 29. Transaxial energy deposition for the one seed case for theoretical versus PET 
measured source distributions.  The PET data were acquired with 256 x 256 
matrix, 3.27 mm slice thickness, 2D acquisition mode and OSEM reconstruction. 
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Figure 30. Transaxial energy deposition for the three seed case for theoretical versus PET 
measured source distributions.  The PET data were acquired with 128 x 128 
matrix, 4.69 mm pixel size, 2D acquisition mode and OSEM reconstruction. 
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Figure 31. Transaxial energy deposition for the three seed case for theoretical versus PET 
measured source distributions.  The PET data were acquired with 256 x 256 
matrix, 2.34 mm pixel size, 2D acquisition mode and OSEM reconstruction. 
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Figure 32. Transaxial energy deposition for the three seed case for theoretical versus PET 
measured source distributions.  The PET data were acquired with 128x128 matrix, 
3.27 mm slice thickness, 2D acquisition mode and OSEM reconstruction. 
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MCNP Calculated Energy Deposition
Based on 2-D Acquisition With 256x256 Recon

Three Seed Positive-Z Axis Comparison

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03
16 14 12 10 8 6 4 2

Voxel Distance From Origin (2.34 mm)

En
er

gy
 D

ep
os

iti
on

 (M
eV

)

Theoretical

5 Slice

 

Figure 33. Transaxial energy deposition for the three seed case for theoretical versus PET 
measured source distributions.  The PET data were acquired with 256 x 256 
matrix, 3.27 mm slice thickness, 2D acquisition mode and OSEM reconstruction. 
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Figure 34. Transaxial energy deposition for one seed case for PET measured source 
distributions located at the voxel center versus data shifted one-half voxel 
distance in the positive and negative X directions.  The PET data were acquired 
with 256 x 256 matrix, 2.34 mm pixel size, 2D acquisition with Whole Body and 
Brain protocols and OSEM reconstruction. 
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Figure 35. Transaxial energy deposition for one seed case for theoretical versus PET 

measured source distributions.  The PET data were acquired with 128 x 128 
matrix, 3.27 slice thickness, 2D acquisition with Whole Body and Brain protocols 
and OSEM reconstruction. 
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Figure 36. Transaxial energy deposition for one seed case for theoretical versus PET 
measured source distributions.  The PET data were acquired with 256 x 256 
matrix, 1.17 mm pixel size, 2D acquisition with Brain protocol and OSEM 
reconstruction. 
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Figure 37. Transaxial energy deposition for one seed case for theoretical versus PET 
measured source distributions.  The PET data were acquired with 256 x 256 
matrix, 3.27 mm slice thickness, 2D acquisition with Brain protocol and OSEM 
reconstruction. 
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Figure 38. Point versus voxel volume source comparison of dose deposition inside a 3 x 3 
x 3 source array arrangement. 
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Figure 39. Point versus voxel volume source comparison of dose deposition inside a 5 x 5 
x 5 source array arrangement. 
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Figure 40. Point versus voxel volume source comparison of dose deposition inside a 7 x 7 
x 7 source array arrangement. 
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Figure 41. Point versus voxel volume source comparison of dose deposition for entire 
phantom using 1 voxel and 1 point arrangement. 
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Figure 42. Point versus voxel volume source comparison of dose for entire phantom 
using 3 x 3 x 3 arrangement. 
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Figure 43. Point versus voxel volume source comparison of dose for entire phantom 
using 5 x 5 x 5 arrangement. 
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Figure 44. Point versus voxel volume source comparison of dose for entire phantom 
using 7 x 7 x 7 arrangement. 
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Table 7. Values plotted in Figure 9 and Figure 18 with associated MCNP error and 
relative discrepancy. 
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Table 8. Values plotted in Figure 12 and Figure 19 with associated MCNP error and 
relative discrepancy. 
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Table 9. Values plotted in Figure 10 and Figure 20 with associated MCNP error and 
relative discrepancy. 
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Table 10. Values plotted in Figure 21 and Figure 22 with associated MCNP error and 
relative discrepancy. 
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Table 11. Values plotted in Figure 11 and Figure 23 with associated MCNP error and 
relative discrepancy. 
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Table 12. Values plotted in Figure 24 and Figure 25 with associated MCNP error and 
relative discrepancy. 
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Table 13. Values plotted in Figure 26 and Figure 28 with associated MCNP error and 
relative discrepancy. 
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Table 14. Values plotted in Figure 27 and Figure 29 with associated MCNP error and 
relative discrepancy. 
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Table 15. Values plotted in Figure 30 and Figure 32 with associated MCNP error and 
relative discrepancy. 
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Table 16. Values plotted in Figure 31 and Figure 33 with associated MCNP error and 
relative discrepancy. 
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Table 17. Values plotted in Figure 14 with associated MCNP error and actual and 
absolute error bounds. 

 

 

Table 18. Values plotted in Figure 34 with associated MCNP error and actual and 
absolute error bounds. 

 

 

 

 

 

 

 

 

 

 

 

 

 100



Table 19. Values plotted in Figure 13 and Figure 35 with associated MCNP error and 
relative discrepancy. 
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APPENDIX C 

IDL DATA EXTRACTION PROGRAM FOR DICOM 

This is a copy of the IDL program utilized for extraction and scaling of the PET 

data located in DICOM format files: 

 

;This IDL program extracts the raw DICOM data 
;by extracting the stored pixel value and then 
;multiplying the entire array by the scaling 
;factor 
 
pro mikesthesis3 
 
;This loop cycles through multiple slices 
;FOR i=847,801,-1 DO BEGIN 
i=729   ;this line is for processing a single slice 
  j=string(i) 
  k=STRCOMPRESS(strtrim(j,2)) 
 
correctfile ='D:\1seed256brain\'+k 
 
 
obj = OBJ_NEW('IDLffDICOM') 
read = obj->Read(correctfile) 
 
; Get the image data 
;array is the actual raw number 
array = obj->GetValue('7fe0'x, '0010'x) 
;scaled is the slice scaling factor 
scaled = obj->GetValue('0028'x, '1053'x) 
;slice is the slice number 
slice = obj->GetValue('0020'x, '0013'x) 
;scaledvalue and slicenumber truncates spaces 
scaledvalue = double(*scaled[0]) 
slicenumber = fix(*slice[0]) 
 
OBJ_DESTROY, obj 
 
;MikesArray is the array of the pixel 
;value multiplied by the scaling factor 
MikesArray = (*array[0])*scaledvalue 
 
 
; Open a new file for writing as IDL file unit number 1: 
OPENU, 1, 'RawData.txt',/append 
OPENU, 2, 'SliceScale.txt',/append 
; Write the data to the file: 
PRINTF, 1, mikesarray 
PRINTF, 2, slicenumber, scaledvalue 
; Close file unit 1: 
CLOSE, 1 
CLOSE, 2 
 
TVScl, mikesarray 
PTR_FREE, array 
;ENDFOR 

end 
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APPENDIX D 

MCNP5 TUTORIAL 

A brief summary of the most relevant MCNP input parameters are summarized 

for the reader interested in perusing the actual MCNP input files of this study.[62, 63] 

The input for MCNP5 follows a specific syntax and structure.  First the geometry is 

specified by cell definitions followed by the surfaces that define them.  Following next is 

the mode of operation, relative importance of each cell, and the source definition.  Then 

the type of result or tallies is specified.  Next is the material description.  Finally, the 

number of histories and other output parameters are specified. 

All space must be accounted for in cell definition.  The Visual Editor (VisEd) 

version 12N, released in November of 2002, allows the user to set up and modify the 

view of the MCNP geometry so that immediate feedback is available of input 

adjustments.  VisEd can display surface and cell numbers with different materials 

represented by different colors.  Views are in 2D and the basis may be changed to any of 

the possible combinations x-y, x-z, y-x, y-z, z-x, z-y while also facilitating zooming in or 

out as well as moving the origin in any of three directions to obtain the desired 

perspective.  Cells may be defined with a variety of surfaces and geometries.  MCNP 

utilizes the Cartesian coordinate system for geometric cell definition.  The cell number, 

material number, and material density define each cell on the cell card.  Next follows a 

combination of surfaces that form the cell boundary.  Planes, cylinders, spheres, cones, 

and other surfaces are described in the MCNP5 manual.  The input file is generally 

referred to as a deck consisting of four cards in the format as follows: 

One-line Problem Title Card 
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Cell Cards 

… 

… 

Blank Line Delimiter 

Surface Cards 

… 

… 

Blank Line Delimiter 

Data Cards 

… 

… 

All input lines are limited to 80 columns.  Comment cards can be used anywhere 

in the input file by either placing a C in columns 1-5 followed by at least one blank and 

can be a total of 80 columns long, or can be appended to an existing input line by the $ 

operator followed by a space and the comment to follow.  Cell, surface and data cards 

must begin within the first five columns.  MCNP executes extensive input file checks for 

user errors, but is not foolproof. 

The cell card structure starts with the cell number in the first five columns.  The 

next entry is the cell material number defined by the user in the data card.  Next is the cell 

material density with a positive entry interpreted as atom density in units of 1024 

atoms/cm3 while a negative entry is interpreted as mass density in g/cm3.  A complete 

specification of the cell geometry follows.  Cell geometry can be defined with 

intersection, union, or compliment of surfaces.  The exclusion operator is used to exclude 
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a cell from the cell being defined with the number sign (#) followed by the excluded cell.  

Optionally, cell parameters can be entered with the form keyword = value.  Some 

parameters might be importance, universe, fill, or lattice.  Repeated structure and lattice 

elements are advanced features of MCNP geometry formats utilized for this project.   

For the cell description describing all space below the plane z = 3, the cell card 

for cell one of material one, adult tissue, would be as follows: 

1     1     -1.04     -1       $cell one, tissue material number, tissue density, surface 

For the surface card, the first entry is the surface number that must be in column 

1-5 and not exceed 5 digits.  The next entry is an alphabetic mnemonic indicating the 

surface type followed by numerical coefficients of the surface equation in specified order.  

Each surface divides space with a positive and negative sense indicated by the sign of the 

surface in the cell card.  For example, for a plane surface number one normal to the z-axis 

at z = 3 are defined as follows in the surface card: 

1     pz     3                   $surface one, plane normal to z axis at z = 3 

The data cards form the remaining data input.  The card name is the first entry and 

must begin in the first five columns.  The required entries are: 

Entry     MCNP card name 

mode,     MODE 

cell and surface parameters,  IMP:P 

source specification,   SDEF 

tally specification,   Fn, En 

material specification,   Mn 

problem cutoffs,   NPS 
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The source specification is generally the most difficult part of input to arrange.  

Source specification allows photon, neutron, or electron type in a variety of energies, 

locations, distributions, and probabilities.  The MODE card consists of the mnemonic 

MODE followed by the choice of particle such as MODE p e for photon and electron 

transport.  Cell and surface parameter cards define values of cell parameters.  One 

example used by this study is the importance card that specifies the relative cell 

importance where the number of entries on the parameter card must equal the number of 

cells in the problem.  Multiple entries may be entered using the entry followed by a 

number of repeats and the letter r.  For example, a photon importance of 1 for 100 cells 

may be written as imp:p 1 99r.  The source specification card, SDEF, defines the basic 

source parameters.  Some of these basic source input parameters include position (POS), 

starting cell (CEL), starting energy (ERG), starting weight (WGT), source particle type 

(PAR).  These may be included in the SDEF card in any order and the equals sign is not 

needed for assigning parameter value.  Source definitions can be points, distributions 

within a volume, or spectrums defined by further dependence.  Source variables may 

depend on other variables and can quickly become quite complex in nature.   

The tally cards specify what information you want from the Monte Carlo 

calculation.  Various tallies related to transport are requested with MCNP5 such as 

particle current, particle flux, and energy deposition.   Many of the tally specification 

“bins” are for example energy (En), time (Tn), and cosine (Cn).  MCNP provides six 

standard neutron, six standard photon, and four standard electron tallies, all normalized to 

be per starting particle.  In addition to tally information, the output file contains tables of 

summary information for information on the calculation run.  Print table 110 was used to 
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verify source specification by identifying the starting location and direction of the first 

fifty histories.  The final table indicates important statistical checks such as the mean, 

error, the variance of variance (VOV), the slope or the largest history scores fluctuate as a 

function of the number of histories run, and the figure of merit (FOM).  Printed with each 

tally is its statistical relative error corresponding to the fraction of one standard deviation.  

MCNP tallies are normalized to one particle.  Even though MCNP is highly regarded and 

experimentally verified, these confidence statements refer to the precision of the Monte 

Carlo calculation itself and not to the accuracy of the result compared to true physical 

values. 

The material cards specify both isotropic composition of the materials and the 

cross-section evaluations for the designated cells.  The format of the material (Mm) card 

for material 3 as water (H2O) is given as an example: 

C Water (Density = 1.00 g/cc)      

M3   1000   -0.111894     $ Hydrogen fraction 

8000  -0.888106     $ Oxygen fraction    

Problem cutoff cards are used for some of the ways to terminate execution of 

MCNP.  For our problems the history cutoff (NPS) card is used. 

Uncertainty is as important as the MCNP answer itself.  The history score 

probability density function, f(x), where x is the tally estimate, is seldom known therefore 

the true mean is estimated by the sample mean.  The estimated relative error (R) can be 

used to form confidence intervals about the estimated mean, allowing one to make a 

statement about what the true result is.  For a well-behaved tally Equation D.1 shows the 

relationship between R and N, the number of histories.  
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N
R 1

∝  (D.1) 

Thus, to halve R, we must increase N, the total number of histories, fourfold.  

MCNP recommends R < 0.10 however enough histories were calculated so the results 

have a one sigma value less than 0.02, if possible, within 5 cm.[5] We almost always 

obtained R < 0.05 which is considered generally reliable for point detectors, and point 

detectors require more precision than the much larger voxel volume tallies we used so the 

R we achieved should be more than adequate.  The relative error is a convenient number 

because it represents statistical precision as a fractional result with respect to the 

estimated mean.  The other two desired behaviors of the relative error are that it is 

decreasing and has a decreasing rate of decrease as a function of NPS. 

The VOV is the estimate of the error of the relative error and it checks the tally 

history scores for any effects of inadequately sampled problems.  It can detect tally errors 

due to insufficient sampling of high weight scores that can cause underestimated mean 

and relative error.  VOV is the estimated relative variance of the estimated R.  It should 

be below 0.10 to improve the probability of forming a reliable confidence interval, but 

the lower the better.  The other two desired behaviors of the variance of the variance are 

that it is decreasing and has a decreasing rate as a function of NPS. 

The more efficient a Monte Carlo calculation is, the larger the FOM will be 

because less computer time is required to reach a given R.  Equation D.2 relates the FOM 

to R and T, computational time. 

TR
FOM

2

1
=  (D.2) 
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The FOM can be a reliable indicator if the tally is well behaved.  It should be 

roughly constant and random in behavior.  Rapid large changes in FOM indicate 

sampling problems that need attention.  For instance, a sharp decrease in FOM indicates a 

seldom-sampled particle path has significantly affected the tally result and relative error 

estimate. 

The slope refers to the history score with the estimated exponent of the 

probability density function’s large score behavior. The slope is defined by Equation D.3 

where the k value is found by the robust “simplex” algorithm[66] that best fit the largest 

history scores by maximum likelihood estimation.   







 +≡ 11

k
Slope  (D.3) 

The maximum slope score is a perfect 10 and zero means not enough information was 

available for the calculation.  A slope above 3 is desired to satisfy the second moment 

existence requirement of the Central Limit Theorem (CLT).  The CLT states that the 

estimated mean will appear to be sampled from a normal distribution with a known 

standard deviation.  When N approaches infinity there is a 68% chance that the true result 

is in the range of one R from the mean and a 95% chance that the answer is within 2 R’s 

of the mean.  As the slope increases, a more reliable confidence interval is formed 

because the tally PDF appears to be more completely sampled. 

It is extremely important to note that these confidence statements refer only to the 

precision of the Monte Carlo calculation itself and not to the accuracy of the result 

compared to the true physical value.  In all runs, all statistical checks were verified. 
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APPENDIX E 
 

DICOM STANDARD 

The Digital Imaging and Communications in Medicine (DICOM) standard is a 

2113 page sixteen-part document published by the National Electrical Manufacturers 

Association (NEMA) to provide a standard method for transferring images and associated 

information between devices manufactured by various vendors.[61] In practice, DICOM 

aids in the distribution and viewing of different types of medical images such as CT, 

ultrasound, MRI, and PET.  A full download copy of the standard is available online at 

http://medical.nema.org/medical/Dicom/ with drafts organized by year.  The standard 

describes a file format for the distribution of images that is an extension of an older 

NEMA standard.  Most people refer to image files that are compliant with the DICOM 

standard as DICOM format files. 

A DICOM file consists of the image data preceded by a header that stores detailed 

information about the scan and images.  DICOM requires a 128-byte preamble that is 

usually all set to zero followed by the letters 'D', 'I', 'C', 'M'. This is followed by the 

details of the header information described by tags with two four-digit hexadecimal 

numbers in the form (gggg,eeee).  The first number is the group number; the second 

number is the element number.  The DICOM header group and element components that 

are required for certain image types are listed in Part 3 of the standard.  For example, 

image modality 'PT' found in group,element (0008,0060) should have elements to 

describe the PET radiopharmaceutical or it would be in violation of the DICOM standard.  

Of particular importance is group,element (0002,0010) that defines the Transfer Syntax 

Unique Identification.  This value reports the structure of the image data, revealing 
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whether the data has been compressed.  It has a direct influence on how the Pixel Data 

Element (7FE0,0010) shall be used for the exchange of encoded graphical image 

data.[61] 

For viewing purposes, image data is stored as pixel values with the largest raw 

output value for each slice scaled to the maximum unsigned two-byte integer value of 

32,767.  DICOM provides different formats for scaling slice data, but all images analyzed 

in this study used direct linear scaling.  This linear scaling is in line equation format of 

y=mx+b where y is the raw output value, x is the pixel value, m is the scaling factor, and 

b is the data shift value that is zero for all study images. 
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APPENDIX F 

MCNP5 SAMPLE INPUT FILES 

This appendix contains two MCNP5 sample input files.  One input file is for a 

theoretical single seed distribution and the second input file is for five slices of input data 

measured by the PET scanner for the same single seed case, listed as experiments 1 and 

28, respectively, in Appendix A. 

F1. Theoretical Distribution 

Voxelized Phantom with Single Seed Source 
c 
c  this is a test program for testing one seed case for ideal 

distribution 
c   
1      1  -1.04      8:-9:10:-11:12:-13   u=1        $ voxel of 

tissue 
2      3  -1.00      1 -2 -3 4 -5 6  #11 #12 #3 #4 $ phantom 
3      3  -1.00     -14 -18 19                       $ seed inner 
4      5  -7.86     -15 -16 17 #3                    $ seed 
10     0            8 -9 10 -11 12 -13   u=2  lat=1  fill=1     
11     0            27 -26 29 -28 33 -32 fill=2      $ lattice 
12     0            35 -34 37 -36 39 -38 fill=2      $ lattice           
14     4  -0.00102   -600 #11 #12 #2 #3 #4 $ surrounding air      
15     0            600  $sphere stops all photon tracks beyond 

its surface   
  
1      px -4.5 
2      px  4.5 
3      py  4.5 
4      py -4.5 
5      pz  5.72 
6      pz -3.11 
8    px  -.234375 $ half pitch of each pixel      
9    px   .234375 $ half pitch of each pixel      
10   py  -.234375 $ half pitch of each pixel      
11   py   .234375 $ half pitch of each pixel      
12   pz  -.1635 $ half pitch of each slice thickness      
13   pz   .1635 $ half pitch of each slice thickness 
14      cz   .0419 
15      cz   .0635 
16     pz    .199 
17      pz   -.199 
18     pz    .176 
19     pz    -.176       
26   px   .234375   $ frame for lattice 1      
27   px  -.234375   $ frame for lattice 1      
28   py   .234375   $ frame  for lattice 1      
29   py  -.234375   $ frame for lattice 1      
32   pz   5.39   $ frame for lattice 1      
33   pz   .2   $ frame for lattice 1 
34   px   4.44  $ frame for lattice 1      
35   px   .234475   $ frame for lattice 1      
36   py   .234375   $ frame  for lattice 1      
37   py  -.234375   $ frame for lattice 1      
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38   pz    .1635 $ frame for lattice 1      
39   pz   -.1635   $ frame for lattice 1      
600  so  10  $void      
 
Mode P e     
IMP:P 1 7r 0  
IMP:e 1 7r 0 
SDEF  PAR=2 erg=0.511 POS=0 0 0   AXS=0 0 1 RAD=d1  EXT=d2 ccc=4 
    si1       0  0.0635 
    si2       -0.199 0.199 
*f8:P,e  (1<10[-9:-1 0:0 0:0])  (1<10[0:0 0:0 -16:-1])     $energy               
c      Adult Tissues (Density = 1.04 g/cc)      
M1   1000  -0.10454      
         6000  -0.22663      
         7000  -0.02490      
         8000  -0.63525      
        11000  -0.00112      
        12000  -0.00013      
        14000  -0.00030      
        15000  -0.00134      
        16000  -0.00204      
        17000  -0.00133      
        19000  -0.00208      
        20000  -0.00024      
        26000  -0.00005      
        30000  -0.00003      
        37000  -0.00001      
        40000  -0.00001      
c       Skeleton (Density = 1.4 g/cc)      
M2   1000  -0.07337      
         6000  -0.25475      
         7000  -0.03057      
         8000  -0.47893      
         9000  -0.00025      
        11000  -0.00326      
        12000  -0.00112      
        14000  -0.00002      
        15000  -0.05095      
        16000  -0.00173      
        17000  -0.00143      
        19000  -0.00153      
        20000  -0.10190      
        26000  -0.00008      
        30000  -0.00005      
        37000  -0.00002      
        38000  -0.00003      
        82000  -0.00001      
c       Water (Density = 1.00 g/cc)      
M3   1000  -0.111894   
         8000  -0.888106   $water in simulated seed     
c      Air (Density = 0.001020 g/cc)      
M4  6000  -0.00012      
         7000  -0.75527      
         8000  -0.23178      
        18000  -0.01283      
c     Iron (Density = 7.86 g/cc)      
M5        26000   1 $ Iron        
DBCN  411000001      
nps 15000000   
prdmp 3j 2 
print 128 110 
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F2. Measured Distribution 

Voxelized Phantom with Voxel Center Point Sources 
c 
c  this is a test program for testing one seed case for 5x5x5 

voxel source 
c   
1      1  -1.04      8:-9:10:-11:12:-13   u=1        $ voxel of 

tissue 
2      3  -1.00      1 -2 -3 4 -5 6  #11 #12 #3 #4 $ phantom 
3      3  -1.00     -14 -18 19                       $ seed inner 
4      5  -7.86     -15 -16 17 #3                    $ seed 
10     0            8 -9 10 -11 12 -13   u=2  lat=1  fill=1     
11     0            27 -26 29 -28 33 -32 fill=2      $ lattice 
12     0            35 -34 37 -36 39 -38 fill=2      $ lattice           
14     4  -0.00102   -600 #11 #12 #2 #3 #4 $ surrounding air      
15     0            600  $sphere stops all photon tracks beyond 

its surface   
  
1      px -4.5 
2      px  4.5 
3      py  4.5 
4      py -4.5 
5      pz  5.72 
6      pz -3.11 
8    px  -.234375 $ half pitch of each pixel      
9    px   .234375 $ half pitch of each pixel      
10   py  -.234375 $ half pitch of each pixel      
11   py   .234375 $ half pitch of each pixel      
12   pz  -.1635 $ half pitch of each slice thickness      
13   pz   .1635 $ half pitch of each slice thickness 
14      cz   .0419 
15      cz   .0635 
16     pz    .199 
17      pz   -.199 
18     pz    .176 
19     pz    -.176       
26   px   .234375   $ frame for lattice 1      
27   px  -.234375   $ frame for lattice 1      
28   py   .234375   $ frame  for lattice 1      
29   py  -.234375   $ frame for lattice 1      
32   pz   5.39   $ frame for lattice 1      
33   pz   .2   $ frame for lattice 1 
34   px   4.44  $ frame for lattice 1      
35   px   .234475   $ frame for lattice 1      
36   py   .234375   $ frame  for lattice 1      
37   py  -.234375   $ frame for lattice 1      
38   pz    .1635 $ frame for lattice 1      
39   pz   -.1635   $ frame for lattice 1      
600  so  10  $void      
 
Mode P e     
IMP:P 1 7r 0  
IMP:e 1 7r 0 
SDEF  PAR=2 erg=0.511 POS=d1 
    si1 L -0.9375  0.9375  0.654  
        -0.9375  0.46875  0.654  
        -0.9375  0  0.654  
        -0.9375 -0.46875  0.654  
        -0.9375 -0.9375  0.654  
        -0.46875  0.9375  0.654  
        -0.46875  0.46875  0.654  
        -0.46875  0  0.654  
        -0.46875 -0.46875  0.654  
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        -0.46875 -0.9375  0.654  
         0  0.9375  0.654  
         0  0.46875  0.654  
         0  0  0.654  
         0 -0.46875  0.654  
         0 -0.9375  0.654  
         0.46875  0.9375  0.654  
         0.46875  0.46875  0.654  
         0.46875  0  0.654  
         0.46875 -0.46875  0.654  
         0.46875 -0.9375  0.654  
         0.9375  0.9375  0.654  
         0.9375  0.46875  0.654  
         0.9375  0  0.654  
         0.9375 -0.46875  0.654  
         0.9375 -0.9375  0.654  
        -0.9375  0.9375  0.327  
        -0.9375  0.46875  0.327  
        -0.9375  0  0.327  
        -0.9375 -0.46875  0.327  
        -0.9375 -0.9375  0.327  
        -0.46875  0.9375  0.327  
        -0.46875  0.46875  0.327  
        -0.46875  0  0.327  
        -0.46875 -0.46875  0.327  
        -0.46875 -0.9375  0.327  
         0  0.9375  0.327  
         0  0.46875  0.327  
         0  0  0.327  
         0 -0.46875  0.327  
         0 -0.9375  0.327  
         0.46875  0.9375  0.327  
         0.46875  0.46875  0.327  
         0.46875  0  0.327  
         0.46875 -0.46875  0.327  
         0.46875 -0.9375  0.327  
         0.9375  0.9375  0.327  
         0.9375  0.46875  0.327  
         0.9375  0  0.327  
         0.9375 -0.46875  0.327  
         0.9375 -0.9375  0.327  
        -0.9375  0.9375  0  
        -0.9375  0.46875  0  
        -0.9375  0  0  
        -0.9375 -0.46875  0  
        -0.9375 -0.9375  0  
        -0.46875  0.9375  0  
        -0.46875  0.46875  0  
        -0.46875  0  0  
        -0.46875 -0.46875  0  
        -0.46875 -0.9375  0  
         0  0.9375  0  
         0  0.46875  0  
         0  0  0  
         0 -0.46875  0  
         0 -0.9375  0  
         0.46875  0.9375  0  
         0.46875  0.46875  0  
         0.46875  0  0  
         0.46875 -0.46875  0  
         0.46875 -0.9375  0  
         0.9375  0.9375  0  
         0.9375  0.46875  0  
         0.9375  0  0  
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         0.9375 -0.46875  0  
         0.9375 -0.9375  0  
        -0.9375  0.9375 -0.327  
        -0.9375  0.46875 -0.327  
        -0.9375  0 -0.327  
        -0.9375 -0.46875 -0.327  
        -0.9375 -0.9375 -0.327  
        -0.46875  0.9375 -0.327  
        -0.46875  0.46875 -0.327  
        -0.46875  0 -0.327  
        -0.46875 -0.46875 -0.327  
        -0.46875 -0.9375 -0.327  
         0  0.9375 -0.327  
         0  0.46875 -0.327  
         0  0 -0.327  
         0 -0.46875 -0.327  
         0 -0.9375 -0.327  
         0.46875  0.9375 -0.327  
         0.46875  0.46875 -0.327  
         0.46875  0 -0.327  
         0.46875 -0.46875 -0.327  
         0.46875 -0.9375 -0.327  
         0.9375  0.9375 -0.327  
         0.9375  0.46875 -0.327  
         0.9375  0 -0.327  
         0.9375 -0.46875 -0.327  
         0.9375 -0.9375 -0.327  
        -0.9375  0.9375 -0.654  
        -0.9375  0.46875 -0.654  
        -0.9375  0 -0.654  
        -0.9375 -0.46875 -0.654  
        -0.9375 -0.9375 -0.654  
        -0.46875  0.9375 -0.654  
        -0.46875  0.46875 -0.654  
        -0.46875  0 -0.654  
        -0.46875 -0.46875 -0.654  
        -0.46875 -0.9375 -0.654  
         0  0.9375 -0.654  
         0  0.46875 -0.654  
         0  0 -0.654  
         0 -0.46875 -0.654  
         0 -0.9375 -0.654  
         0.46875  0.9375 -0.654  
         0.46875  0.46875 -0.654  
         0.46875  0 -0.654  
         0.46875 -0.46875 -0.654  
         0.46875 -0.9375 -0.654  
         0.9375  0.9375 -0.654  
         0.9375  0.46875 -0.654  
         0.9375  0 -0.654  
         0.9375 -0.46875 -0.654  
         0.9375 -0.9375 -0.654 
 sp1       175.55541 
               298.54932 
               247.03905 
               214.45092 
               173.45295 
               424.69692 
               2387.3433 
               6713.1548 
               1695.6340 
               355.31574 
               941.90208 
               10225.314 
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               34445.653 
               7365.9686 
               563.45928 
               434.15799 
               3198.8929 
               9169.8793 
               2709.0197 
               426.79938 
               195.52878 
               531.92238 
               769.50036 
               394.21125 
               135.60867 
               93.646370 
               132.20664 
               192.80135 
               264.41328 
               407.63714 
               457.21463 
               7871.8037 
               33310.565 
               6483.6340 
               611.45571 
               1773.7724 
               42273.073 
               180500.62 
               33574.978 
               424.16297 
               638.99876 
               10196.437 
               38312.383 
               7981.9759 
               512.30073 
               176.27552 
               743.66235 
               1222.9114 
               440.68880 
               132.20664 
               37.686400 
               75.372800 
               169.58880 
               216.69680 
               339.17760 
               518.18800 
               13096.024 
               57160.847 
               11042.115 
               725.46320 
               2628.6264 
               70558.362 
               308717.57 
               57179.690 
               329.75600 
               678.35520 
               14942.658 
               62191.982 
               12945.278 
               405.12880 
               56.529600 
               452.23680 
               1130.5920 
               508.76640 
               84.794400 
               189.54880 
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               246.41344 
               274.84576 
               246.41344 
               393.31376 
               483.34944 
               7288.1514 
               29076.786 
               5795.4546 
               658.68208 
               1795.9749 
               37777.076 
               155273.64 
               29086.263 
               383.83632 
               473.87200 
               8269.0664 
               32209.080 
               7340.2773 
               492.82688 
               75.819520 
               393.31376 
               952.48272 
               525.99792 
               123.20672 
               192.86254 
               305.97602 
               457.33649 
               275.05291 
               152.17424 
               333.64406 
               1821.2083 
               5590.5724 
               1450.9448 
               270.98408 
               680.30838 
               7633.1251 
               26663.857 
               5736.2365 
               360.49834 
               348.29185 
               2555.2252 
               7100.9221 
               2213.4435 
               363.75340 
               144.03658 
               400.37287 
               689.25980 
               421.53079 
               120.43737 
*f8:P,e  (1<10[-9:-1 0:0 0:0])  (1<10[0:0 0:0 -16:-1])     $energy               
c      Adult Tissues (Density = 1.04 g/cc)      
M1   1000  -0.10454      
         6000  -0.22663      
         7000  -0.02490      
         8000  -0.63525      
        11000  -0.00112      
        12000  -0.00013      
        14000  -0.00030      
        15000  -0.00134      
        16000  -0.00204      
        17000  -0.00133      
        19000  -0.00208      
        20000  -0.00024      
        26000  -0.00005      
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        30000  -0.00003      
        37000  -0.00001      
        40000  -0.00001      
c       Skeleton (Density = 1.4 g/cc)      
M2   1000  -0.07337      
         6000  -0.25475      
         7000  -0.03057      
         8000  -0.47893      
         9000  -0.00025      
        11000  -0.00326      
        12000  -0.00112      
        14000  -0.00002      
        15000  -0.05095      
        16000  -0.00173      
        17000  -0.00143      
        19000  -0.00153      
        20000  -0.10190      
        26000  -0.00008      
        30000  -0.00005      
        37000  -0.00002      
        38000  -0.00003      
        82000  -0.00001      
c       Water (Density = 1.00 g/cc)      
M3   1000  -0.111894   
         8000  -0.888106   $water in simulated seed     
c      Air (Density = 0.001020 g/cc)      
M4  6000  -0.00012      
         7000  -0.75527      
         8000  -0.23178      
        18000  -0.01283      
c     Iron (Density = 7.86 g/cc)      
M5        26000   1 $ Iron        
DBCN  411000001      
nps 15000000   
prdmp 3j 2 
print 128 110 
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